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Abstract

In this paper, a set of low Earth orbiting spacecraft consisting of multiple chasers

and a single cooperative or unknown target, is considered for rendezvous and

along-orbit formation maneuvers. Each maneuverable spacecraft can change its

experienced atmospheric drag acceleration by extending/retracting dedicated

surfaces. A Lyapunov-based adaptive controller is designed using an Integral

Concurrent Learning (ICL)-based adaptive update law and the Schweighart-

Sedwick equations of relative motion to regulate the in-plane relative states

of each target-chaser pair. The controller is designed to compensate for un-

certainties in atmospheric density, drag or ballistic coefficient and the velocity

relative to the atmosphere of each spacecraft in the fleet. When the system is

sufficiently excited, the controller also provides estimation of the uncertain pa-

rameters. Numerical simulations using nonlinear dynamics for each spacecraft

and the NRLMSISE-00 atmospheric density model, are conducted to validate

the performance of the controller.
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1. Introduction

As the interest in exploiting natural forces for orbital maneuvering increases

due to its potential for propellant cost savings, the use of these forces to ma-

neuver fleets with several spacecraft for missions in Low Earth Orbit (LEO) has

increasing interest. Atmospheric drag is the greatest non-gravitational force5

acting on a spacecraft in LEO, and the difference in acceleration due to drag

(differential drag) between two spacecraft has been used to perform relative ma-

neuvering. The differential drag has been successfully used in the ORBCOMM

constellation of satellites to save propellant in thruster-based formation keeping

maneuvers [1], and in the large fleet of Planet Labs satellites for propellant-less10

phasing maneuvers along the same orbit [2].

The introduction of differential drag for formation keeping control dates

back to 1989, when the Clohessy-Wiltshire (CW) linear equations for relative

motion between two spacecraft was used to design an algorithm to control the

relative in-plane motion by transforming the dynamics into a double integrator15

and a harmonic oscillator. This model was used to obtain a closed-form solution

under the assumption of constant differential drag and a control algorithm was

developed to regulate the states with a discrete input [3].

Atmospheric drag and lift were exploited to control in-plane and out-of-

plane motion between two spacecraft in [4]. Independent control algorithms20

were developed for the in-plane and out-of-plane motion using differential drag

and lift, respectively. Based on the required inputs, an algorithm computed the

orientation of a flat plate attached to each spacecraft. The Schweighart-Sedwick

(SS) linear equations for relative motion that include the J2 perturbation [5]

were used to develop a discrete control algorithm for rendezvous maneuvers25

based on closed form solutions in [6].

A Lyapunov-based control strategy was implemented in [7] to achieve space-

craft rendezvous using differential drag. The in-plane unstable SS dynamic

model was initially stabilized using a Linear Quadratic Regulator (LQR) and

then a Lyapunov-based controller was designed using the error between the30
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relative states and the stabilized dynamics, the control commands were also

restricted to discrete values. An adaptive capability to change controller pa-

rameters depending on the critical value of differential drag was also included.

In [8], the attitude of a spacecraft was used to change the experienced drag in-

stead of dedicated actuators for drag surfaces. An LQR controller was designed35

to drive the system to a desired relative motion using a state space represen-

tation of the error. The control command was then used to compute a normal

vector to the drag surface attached to the body that served as reference for an

attitude determination and control system (ADCS).

Research has also been conducted to include multiple spacecraft in simulta-40

neous relative maneuvers with respect to a single target. A centralized heuristic

control logic was used in [6] to give priority to a specific chaser in the fleet, then

the target set its control command to meet the control requirements of the pri-

oritized chaser. Only chasers that required the same sign for their corresponding

inputs were able to satisfy the control command simultaneously, while the others45

remain with zero differential drag until a new priority was established. In [9],

the formulation of an optimization problem was presented to find the minimum

time required to achieve rendezvous with any number of spacecraft by using an

augmented state space representation. Simulations with 2, 5 and 12 spacecraft

were conducted using linearized dynamics.50

An adaptive sliding mode strategy was used in [10] to control the relative

dynamics using a continuous differential drag input. The controller was sim-

ulated for formation keeping as well as reconfiguration maneuvers using two

spacecraft. A heuristic algorithm for multiple spacecraft was developed and

applied to an along-orbit formation keeping maneuver with four spacecraft. In55

this algorithm, each chaser changes its drag acceleration to satisfy its control

command and the target changes its drag acceleration each orbit to sequentially

satisfy the differential drag requirement of each chaser.

One of the main challenges of differential-drag based relative maneuvers is

that the controller is required to be robust to uncertainty in parameters such as60

atmospheric density and the drag coefficient, which are required to compute the

3



drag acceleration experienced by a spacecraft. Models for atmospheric density

such as the 1976 U.S Standard [11], Harris-Priester [12] and NRLMSISE-00 [13],

among others, are commonly used to estimate the local density. Some of the

more complex density models include spacecraft position, date, time, and solar65

and geomagnetic indices as input parameters. Alternatively, the drag coefficient

is calculated using theoretical [14, 15] or numerical models for simple spacecraft

shapes [16, 17]. However, the level of uncertainty is still significant even when

using complex models [18].

Lyapunov-based adaptive control techniques have been successfully used in70

the past for differential-drag based relative maneuvering, achieving state regu-

lation despite some system uncertainties [7, 19]. However, the adaptive update

laws did not ensure convergence of the parameter estimates to their true val-

ues. Various adaptive controllers have been developed under the assumption of

persistence of excitation (PE) [20, 21, 22] to achieve simultaneous error regu-75

lation and system identification. Nevertheless, this can only be ensured under

persistent excitation (PE) which cannot be guaranteed and is difficult to ver-

ify on-line for general nonlinear systems. A concurrent learning (CL) adaptive

update law was developed in [23, 24] to achieve state regulation or tracking

and on-line parameter estimation while relaxing the PE requirement, which be-80

came a verifiable condition of finite excitation, assuming the highest order states

were measurable. A modification to the CL update law, called integral concur-

rent learning (ICL), was presented in [25, 26] to achieve estimation convergence

without measuring the highest order states.

In this paper, a Lyapunov-based adaptive control algorithm that incorpo-85

rates an ICL update law is developed. Unlike the preliminary efforts in [19]

where only regulation of the in-plane relative states between chaser and target

in LEO was ensured, the result in this paper shows simultaneous state regu-

lation and online identification of uncertain parameters, including the drag or

ballistic coefficient, the magnitude of the spacecraft-atmosphere relative veloc-90

ity and the atmospheric density. The developed controller exploits the use of an

LQR control law to address the problem of regulating the four in-plane states
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of the SS dynamics with a single input. This input is then modified to include

an adaptive term that provides the adaptation and online estimation capability.

The use of a linearly parameterizable time-varying atmospheric density model95

enables the development of an ICL-based adaptive update law that also esti-

mates this highly uncertain parameter online. The controller designed in this

paper is intended to provide robustness to uncertainty as well as an improved

insight about the uncertain parameters as compared to a priori information,

without relying on complex models or computationally expensive operations.100

Numerical simulations for rendezvous and along-orbit formation are per-

formed using a fleet of multiple chasers maneuvering with respect to a coop-

erative and an unknown target, respectively. Each maneuverable spacecraft

is assumed to be equipped with the Drag Maneuvering Device (DMD) devel-

oped at the University of Florida ADvanced Autonomous Multiple Spacecraft105

(ADAMUS) laboratory.

The paper is organized as follows: Section 2 presents the dynamic models

used for control design and numerical simulations, Section 3 shows the control

design, Section 4 presents the corresponding stability analysis, Section 5 explains

the multiple spacecraft rendezvous and along-orbit formation maneuvers and110

Sections 6 and 7 show the numerical simulations and conclusions, respectively.

2. Dynamics Modeling

2.1. Spacecraft Relative Dynamics

In LEO, the dynamics of a spacecraft can be modeled considering the gravi-

tational influence of the Earth including J2 and the non-gravitational influence115

of atmospheric drag and lift. In the Earth Centered Inertial (ECI) coordinate

system, the acceleration of the spacecraft can be written as

ẍ = −GM⊕
r3

x+
3

2

(
J2GM⊕R

2
⊕

r4

)(
x

r

(
5z2

r2
− 1

))
+ r̈D,x + r̈L,x (1)

5



ÿ = −GM⊕
r3

y +
3

2

(
J2GM⊕R

2
⊕

r4

)(
y

r

(
5z2

r2
− 1

))
+ r̈D,y + r̈L,y (2)

z̈ = −GM⊕
r3

z +
3

2

(
J2GM⊕R

2
⊕

r4

)(
z

r

(
5z2

r2
− 3

))
+ r̈D,z + r̈L,z (3)

where r̈D = [r̈D,x, r̈D,y, r̈D,z]
T

and r̈L = [r̈L,x, r̈L,y, r̈L,z]
T

are the accelera-

tions due to atmospheric drag and lift expressed in the ECI coordinate system,

respectively. In (1)-(3), G is the universal gravitational constant, r = [x, y, z]
T

120

is the ECI position of the spacecraft, J2 is the coefficient that represents the

second order harmonic of gravitational potential field of the Earth, and M⊕

and R⊕ are the mass and radius of the Earth, respectively.

Assumption 1. Each maneuverable spacecraft is ram-aligned and all objects are

in circular LEO, the inter-spacecraft distance is small compared to the radius125

of the orbit.

Under Assumption 1, the relative motion between any chaser and the tar-

get can be expressed in the Local-Vertical/Local-Horizontal (LVLH) coordinate

system (Figure 1) using the SS dynamic model that includes the influence of J2

perturbation as follows:130

∆ẍ = 2 (Ωc) ∆ẏ +
(
5c2 − 2

)
Ω2∆x+ ux (4)

∆ÿ = −2 (Ωc) ∆ẋ+ uy (5)

∆z̈ = −q2∆z + 2lq cos (qt+ ∅) + uz (6)

where Ω is the constant angular velocity of the orbit of the chaser, ∆r =

[∆x,∆y,∆z]T is the LVLH position of the target, u = [ux, uy, uz]T is the

control input, and c is defined as

c =

√
1 +

3J2R2
⊕

8r2
ref

(1 + 3 cos (2iref )) (7)
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where rref and iref are the radius and inclination of the orbit of the chaser.

The parameters ∅, l and q in the decoupled out-of-plane equation of motion135

in (6) are defined in [5].

The LVLH coordinate system attached to the chaser spacecraft is defined

with origin at its center of mass as follows: the unit vector ∆x̂ points from

the center of the Earth towards the origin of the system, the unit vector ∆ẑ

is aligned with the orbit angular momentum vector and the unit vector ∆ŷ140

completes a right-hand Cartesian coordinate system.

2.2. Drag Maneuvering Device

The Drag Maneuvering Device (DMD) [27] originally designed at the Uni-

versity of Florida ADAMUS laboratory for spacecraft controlled re-entry [28, 29,

30], has also shown to have potential for spacecraft relative maneuvers [31, 19]145

and passive attitude stabilization [32, 33]. The device consists of four 3.7 me-

ters long repeatedly deployable/retractable surfaces offset 90 degrees from each

other and inclined 20 degrees and is mounted on the anti-ram face of a CubeSat

spacecraft providing additional cross-sectional area up to 0.5 m2, see Figure 1.

Figure 1: LVLH Coordinate System.
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2.3. Differential Drag and Lift150

Each maneuverable spacecraft in the fleet is capable of changing its experi-

enced atmospheric drag and lift using the DMD. The contribution of each DMD

surface on the atmospheric drag acceleration experienced by a spacecraft can

be expressed as

r̈D,j , −ρ(t)SCD,j

2m
V 2
r V̂r (8)

while the contribution on the lift acceleration is155

r̈L,j , −ρ(t)SCL,j

2m
V 2
r

(
V̂r×n̂×V̂r

)
(9)

where the subscript j indicates the jth DMD surface on the spacecraft, ρ(t) is

the time-varying atmospheric density, CD,j is the drag coefficient, CL,j is the

lift coefficient, n̂ is the the unit vector normal to the surface, S is the cross-

sectional area of the surface, and m is the mass of the spacecraft. Therefore,

a DMD-equipped spacecraft can change its experienced atmospheric drag and

lift by varying S, i.e. extending/retracting the DMD surfaces. The vector

Vr represents the velocity of the spacecraft relative to the atmosphere which is

assumed to be attached to the Earth and is defined as

Vr , ṙ − ω⊕ × r (10)

where ω⊕ is the angular velocity of the Earth. The total experienced atmo-

spheric drag and lift can then be computed by adding the contribution of all

DMD surfaces mounted on the spacecraft as follows:

r̈D = −ρ(t)S

2m
V 2
r V̂r

4∑
j=1

CD,j (11)

r̈L = −
4∑

j=1

ρ(t)SCL,j

2m
V 2
r

(
V̂r×n̂j×V̂r

)
. (12)

The drag and lift coefficients for the jth surface mounted on a DMD-

equipped spacecraft can be computed using the analytical expressions from160

[14, 15] which consider a flat plate in a free molecular flow:
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(13)
CD,j ,

2

s
√
π

exp (−s2 sin2(θin))

+
sin(θin)

s2
(1 + 2s2)erf(s sin(θin)) +

√
π

s
sin2(θin)

√
Tk,out/Ta

CL,j ,
cos(θin)

s2
erf(s cos(θin)) +

1

s

√
π cos(θin) sin(θin)

√
Tk,out/Ta (14)

where erf(·) represents the error function [34], s = Vr
√
m/(2kBTa), kB is the

Boltzmann constant, θin is the principal rotation angle between V̂r and n̂,

Ta is the ambient atmosphere temperature, and Tk,out is the reflected kinetic

temperature of particles at the surface defined as165

Tk,out ,
m

3kB
V 2
r (1− α) + αTs (15)

where Ts is the temperature of the surface, and α is an accommodation coef-

ficient that represents the influence of the surface material properties. In this

work the commonly used value of α = 0.9 is adopted.

In a fleet with N chasers and one target, the differential atmospheric drag

and lift between the ith chaser and the target are given by170

∆r̈D,i , r̈D,t − r̈D,i (16)

∆r̈L,i , r̈L,t − r̈L,i (17)

where the subscripts t and i represent the target and the ith chaser, respec-

tively.

3. Control Design

3.1. Control Objective

The control objective is to perform rendezvous and along-orbit formation175

maneuvers between a DMD-equipped spacecraft (chaser) and a target that could

be either cooperative or unknown, using the differential drag as the control
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input. The challenge of this problem is that the time-varying local atmospheric

density ρ(t), drag coefficients CD and the magnitude of spacecraft-atmosphere

velocity Vr are uncertain for both spacecraft. In addition, for the unknown180

target case, its area-to-mass ratio, e.g. the physical properties of the target,

are also unknown. The following assumptions are made to simplify the control

design process but are not used in the numerical simulations.

Assumption 2. Since the accommodation coefficient is α ≈ 1, the resulting lift

coefficients CL and accelerations r̈L are very small compared with those for185

drag. Therefore, the lift acceleration is neglected.

Assumption 3. The direction of each spacecraft-atmosphere relative velocity V̂r

is opposite to the ∆ŷ direction.

Considering Assumptions 2 and 3, the auxiliary control input in (4)-(6) can

be written as190

u ,

(
ρi(t)C

i
DV

2
r,iū(t)− ρt(t)V 2

r,t

Ct
DSt

2mt

)
∆ŷ (18)

where ū = Si/(2mi) represents the area-to-mass ratio of the ith chaser space-

craft, which is the actual control input. The drag coefficient for the target Ct
D

and for the ith chaser Ci
D are defined as the summation of the drag coefficient

of each DMD surface and are given by

Ck
D ,

4∑
j=1

CD,j , k = t, i. (19)

From the definition of u, although the DMD surfaces on the target spacecraft

could be maneuverable, meaning that St can also change for the cooperative

case, the chaser will be the one responsible of achieving the required differential

drag provided a known area-to-mass ratio St/(2mt) of the cooperative target

or an estimate of this ratio for the unknown target. Also, given the direction of195

u, its magnitude is given entirely in the component uy as

uy ,

(
ρi(t)C

i
DV

2
r,iū(t)− ρt(t)V 2

r,t

Ct
DSt

2mt

)
. (20)
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Inspired by the results in [35], where the differential drag was modeled as a

time-varying function with its two principal Fourier components at 0 and Ω,

and considering that the behavior over time of the differential in that case was

dominated by the variation of the atmospheric density, this parameter can be200

modeled as

ρk(t) , D1,k +D2,k sin(Ωt) +D3,k cos(Ωt) , k = t, i (21)

where D1,k, D2,k, D3,k ∈ R are unknown constants.

3.2. Control Development

Considering that uy is the only nonzero component of the auxiliary control

input u, and given that the out-of-plane (∆z) dynamics are decoupled (see205

(4)-(6)), then only the in-plane motion can be affected by means of differential

drag. The in-plane SS dynamics can be represented in state space form as


∆ẋ

∆ẍ

∆ẏ

∆ÿ


︸ ︷︷ ︸

Ẋ

=


0 1 0 0

b 0 0 a

0 0 0 1

0 −a 0 0


︸ ︷︷ ︸

A


∆x

∆ẋ

∆y

∆ẏ


︸ ︷︷ ︸

X

+


0

0

0

1


︸︷︷︸
B

uy (22)

where a , 2Ωc and b , (5c− 2)Ω2 are known positive constants.

To compensate for the uncertain parameters in the auxiliary control input

uy, (20) can be linearly parameterized as210

uy = YΘ, (23)

where Y ∈ R6 denotes the measurable regression matrix

Y (ū(t),Ω) ,
[
ū ū sin(Ωt) ū cos(Ωt) − St

2mt
− St

2mt
sin(Ωt) − St

2mt
cos(Ωt)

]
(24)
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and the vector of uncertain constant parameters Θ ∈ R6 is defined as

Θ ,



D1,iC
i
DV

2
r,i

D2,iC
i
DV

2
r,i

D3,iC
i
DV

2
r,i

D1,tC
t
DV

2
r,t

D2,tC
t
DV

2
r,t

D3,tC
t
DV

2
r,t


. (25)

For the unknown target case, the area to mass ratio St/(2mt) can be moved

from the regression matrix Y to the last three entries of the uncertain vector

Θ, meaning that its entire ballistic coefficient Ct
b = Ct

DSt/(2mt) is uncertain.

Since all the uncertain parameters in Θ represent physical quantities, their

entries can be upper and lower bounded as215

Θj < Θj < Θ̄j (26)

where Θj is the jth entry of Θ, and Θj , Θ̄j ∈ R denote the known bounds for

the corresponding parameter. Similarly, the linear parameterization using the

estimates is

Y Θ̂ , ρ̂i(t)Ĉ
i
DV̂

2
r,iū(t)− ρ̂t(t)V̂ 2

r,t

Ĉt
DSt

2mt
(27)

where Θ̂ ∈ R6 is the estimate of Θ , ρ̂k(t) = D̂1,k+D̂2,k sin(Ωt)+D̂1,k cos(Ωt),

and D̂1,k, D̂2,k, D̂3,k, V̂
2
r,k and Ĉk

D are estimates of D1,k, D2,k, D3,k, V
2
r,k and220

Ck
D, respectively. In case the target was unknown, the true values of St and

mt can be replaced by their estimates Ŝt and m̂t, respectively.

Let us define the estimation error Θ̃ as

Θ̃ , Θ− Θ̂. (28)

Then, the auxiliary control input uy can be rewritten as

uy = Y Θ̃ + Y Θ̂. (29)
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To facilitate the subsequent stability analysis it will be useful to express the

auxiliary control input as

uy , uFB + uAD, (30)

where uFB , uAD ∈ R are subsequently detailed state feedback and adaptation

terms, respectively.

Using the SS dynamics in (22), it can be shown by evaluating the rank of the

controllability matrix that the system is controllable using the auxiliary input

uy. Therefore, the state feedback term uFB can be designed with the purpose

of regulating the four states using a Linear Quadratic Regulator (LQR). The

LQR provides a state feedback control law that regulates all states of the SS

dynamics to zero while minimizing the cost function

J =

∫ ∞
0

(
XTQX +Ru2

FB

)
dt (31)

where X ∈ R4 is the measurable state vector defined in (22), Q ∈ R4×4 is a

positive definite weight matrix used to specify the desired performance of each

state, and R ∈ R>0 is a weight used to penalize the control effort. The state

feedback control law is defined as

uFB = −KLQRX (32)

where KLQR ∈ R4 is a constant feedback gain vector that can be obtained225

from solving the Algebraic Riccati Equation (ARE) [36].

The approach of using a linear control technique such as the LQR is proposed

taking advantage of the fact that all the nonlinearities and uncertainties are in

the auxiliary control input. However, this control law by itself does not provide

the adaptation capability required to compensate for the uncertain parameters.230

Therefore, the term uAD is used for this purpose.

For simplicity, from this point on we will consider the more general case of

an unknown target, the true values of St and mt can be used instead whenever

available. Using (29) and (30), substituting the definition of uFB and solving

13



for uAD yields

uAD = Y Θ̃ + ρ̂i(t)Ĉ
i
D

ˆV 2
r,iū(t)− Ĉt

DŜt

2m̂t
ρ̂t(t)

ˆV 2
r,t +KLQRX. (33)

Based on (32), (33), and the subsequent stability analysis, the control input ū

is designed as

ū ,
(
ρ̂i(t)Ĉi

DV̂
2
r,i

)−1
(
Ĉt

DŜt

2m̂t
ρ̂t(t)V̂

2
r,t −KLQRX

)
. (34)

The estimates in (34) are determined from the adaptive update law

(35)

˙̂Θ , proj

(
2ΓY TBTPTX

+ ΓKICL

Ns∑
i=1

YT
i B

T
(
X(t)−X(t−∆t)− Ui −BYiΘ̂

))

where proj(·) is the continuous projection algorithm developed in [37] used

here to keep Θ̂ within the bounds shown in (26), Ns ∈ Z>0 is the number of

input-output data pairs, ∆t is the time between samples, B ∈ R4 is defined in

(22), P ∈ R4×4 is a symmetric positive definite matrix used in the subsequent

stability analysis, Γ ∈ R6×6 is the adaptation gain, KICL is a symmetric

positive definite gain matrix and Yi and Ui are defined as

Yi(∆t, ti) ,
∫ ti

ti−∆t

Y (σ)dσ, (36)

Ui(∆t, ti) ,
∫ ti

ti−∆t

AX(σ)dσ. (37)

The update law in (35) is motivated by ICL-based approach to formulate a

finite excitation condition that can be used for parameter identification. Specif-

ically, the first terms in (35) are typical gradient-based terms motivated by the

Lyapunov analysis to compensate for the uncertain disturbances. The terms

within the summation can be rewritten in an equivalent analysis form, as

˙̂Θ = proj

(
2ΓY TBTPTX + ΓKICL

Ns∑
i=1

YT
i YiΘ̃

)
. (38)
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This form of the update law indicates that if sufficient input-output data is

collected, then the summation of the regression matrices will be positive definite,

which, unlike the traditional PE condition, can be verified online. The excitation

condition is given by the following assumption.235

Assumption 4. The system is sufficiently excited over a finite duration of time

T ∈ R>0 such that [25, 26]

λmin

{
Ns∑
i=1

YT
i Yi

}
> λ̄ ∀ t ≥ T (39)

where λmin{·} is the minimum eigenvalue of the matrix represented by the

expression in {·}, and λ̄ ∈ R>0 is a threshold defined by the user.

4. Stability Analysis

For the stability analysis two theorems are formulated. The first theorem

shows the behavior of the system before the condition of finite excitation (As-240

sumption 4) is satisfied, and the second theorem considers the system perfor-

mance after satisfying this condition.

Theorem 1. Given the relative dynamics in (22) along with the adaptive update

law in (38), the controller designed in (34) ensures that the estimation error Θ̃

remains bounded and the states X are asymptotically regulated in the sense245

that

lim
t→∞

‖X ‖= 0. (40)

Proof. Let t ∈ [0, T ) and V : R → R≥0 be a candidate Lyapunov function

defined as

V (η) ,XTPX +
1

2
Θ̃

T
Γ−1Θ̃, (41)

where the composite state vector η ∈ R10 is

η ,
[
XT Θ̃

T
]T
. (42)
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The candidate Lyapunov function can be bounded by

β1 ‖ η ‖2≤ V (η) ≤ β2 ‖ η ‖2, (43)

where β1 and β2 are positive bounding constants.

Substituting (22), (30) and (32) into the time derivative of (41) yields250

V̇ (η) = XT (PA∗ +A∗TP )X + 2XTPBuAD − Θ̃
T

Γ−1 ˙̂Θ, (44)

where A∗ , A −BKLQR and A ∈ R4×4 is defined in (22). Note that A∗ is

Hurwitz since KLQR is obtained from solving the LQR problem. Therefore, a

symmetric positive definite matrix Q1 ∈ R4×4 can be determined so that

PA∗ +A∗TP = −Q1. (45)

Substituting (33), (34) and (38) into the time derivative of the Lyapunov func-

tion yields

V̇ (η) = −XTQ1X − Θ̃
T
KICL

Ns∑
i=1

YT
i YiΘ̃. (46)

Since
∑Ns

i=1 YT
i Yi is at least positive semi-definite for t < T , then (46) can be

upper bounded by

V̇ (η) ≤ −XTQ1X. (47)

From (47), V̇ is negative semi-definite, indicating that V ∈ L∞. Therefore,

X,Θ̃ ∈ L∞, and then η ∈ L∞. Using (28), Θ̂ ∈ L∞. Since sin(Ωt), cos(Ωt) ∈

L∞ by definition, then the estimated atmospheric density ρ̂i(t), ρ̂t(t) ∈ L∞.

Therefore, from (34), ū ∈ L∞. Since ū ∈ L∞, then Y ∈ L∞ from (24), and

then Ẋ ∈ L∞ from (22). Since Ẋ ∈ L∞, then X is uniformly continuous

and from (47), X ∈ L2. Therefore, by Barbalat’s lemma [38]

lim
t→∞

‖X ‖= 0. (48)

Now, the performance improvement after satisfying the finite excitation con-

dition is described through Theorem 2.
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Theorem 2. Given the relative dynamics in (22) along with the adaptive update

law in (38), the controller designed in (34) yields exponential regulation of the

states X and estimation error θ̃ in the sense that

‖ η(t) ‖≤ β2

β1
exp

(
λ

2β2
T

)
‖ η(0) ‖ exp

(
− λ

2β2
t

)
(49)

for all t ∈ [0,∞), where

λ , min

{
λmin {Q1} , λmin

{
KICL

Ns∑
i=1

YT
i Yi

}}
. (50)

Proof. When t > T , the term
∑Ns

i=1 YT
i Yi becomes positive definite under

Assumption 4. Therefore, (46) can be upper bounded by

V̇ (η) ≤ −λmin {Q1} ‖X ‖2 −λmin

{
KICL

Ns∑
i=1

YT
i Yi

}
‖ Θ̃ ‖2, (51)

which can be rewritten as

V̇ (η) ≤ −λ ‖ η ‖2 . (52)

Using the Comparison Lemma from [38] and (43) yields

V (η(t)) ≤ V (η(T ))exp

(
− λ

β2
(t− T )

)
∀ t ≥ T, (53)

and applying (43) to (53) we get

‖ η(t) ‖≤

√
β2

β1
‖ η(T ) ‖ exp

(
− λ

2β2
(t− T )

)
∀ t ≥ T. (54)

Moreover, from (47) we know that

V (η(T )) ≤ V (η(0)) (55)

which, using the bounds in (43), can be rewritten as

β1 ‖ η(T ) ‖2≤ β2 ‖ η(0) ‖2 . (56)

Therefore

‖ η(T ) ‖≤

√
β2

β1
‖ η(0) ‖ . (57)
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Finally, substituting (57) into (54) yields

‖ η(t) ‖≤ β2

β1
exp

(
λ

2β2
T

)
‖ η(0) ‖ exp

(
− λ

2β2
t

)
∀ t ≥ 0, (58)

which is an exponential envelope valid for t ∈ [0,∞).

5. Multiple Spacecraft Maneuvers255

5.1. Rendezvous

When multiple chasers are maneuvering with respect to a single target, a

given chaser-target pair can be treated as a set of SS equations where the in-

plane states are required to be regulated. The adaptive control law in (34) has

been designed to do that between two spacecraft, namely the target and the ith260

chaser. The developed control law requires knowledge of the area-to-mass ratio

of the target spacecraft and measurement of the relative states to compute the

required cross-sectional area for the chaser spacecraft.

The multiple spacecraft scenario is then proposed as follows: In case a coop-

erative target is considered, one of the spacecraft in the fleet is selected as the265

target, this spacecraft broadcasts its ECI states and the current level of deploy-

ment of its DMD surfaces to all the chasers. When the target is unknown, each

chaser is assumed capable of measuring the relative states of the target, and the

estimates of St and mt are included in Θ̂ so that the control law (34) could

be computed. Each chaser spacecraft determines its required cross-sectional270

area by evaluating (34) on-board and numerically propagating the parameter

estimates Θ̂. Note that at any time, in case the cooperative target spacecraft

fails, any functional chaser can be labeled as the target and the control algo-

rithm running on each remaining chaser can be re-initialized to maneuver with

respect to the new target.275

5.2. Along-orbit Formation

The along-orbit formation considers a fleet of multiple chasers and one target

where the chasers are required to be along the orbit of the target with specific

separations (∆d).
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5.2.1. Change of Reference Frame280

In the rendezvous problem, the LVLH reference frame with origin at the

center of mass of the ith chaser was used to compute the relative states. For the

along-orbit formation, let us now consider a reference frame that has a position

offset with respect to each LVLH but still moves with the corresponding chaser.

A desired along-orbit distance with respect to the target ∆di is given to the285

ith chaser. This distance needs to be consistent with the assumptions made in

the SS dynamics. Note that for the along-orbit formation case the distance ∆di

can be expressed as an offset in true anomaly ∆νi with respect to that of the

ith chaser spacecraft as

∆νi =
∆di
ai

[rad] (59)

where ai is the semi-major axis of the ith chaser, then the orbital elements290

for the origin of the new reference frame are the same as those of the chaser

but adding the offset ∆νi to the true anomaly. The ith coordinate system is

defined by the ∆x̂i axis pointing from the center of the earth towards the origin

of the system (desired position for the ith chaser), the ∆ẑi axis aligned with

the orbit angular momentum vector and the ∆ŷi axis completing a right-hand295

Cartesian coordinate system as shown in Figure 2.

Each set of SS equations represent relative states with respect to the desired

along-orbit position and the control goal remains the same as in the rendezvous

case, i.e. regulate all states to zero. Therefore, the adaptive control law devel-

oped in Section 3 is still valid to perform the along-orbit formation maneuver.300

5.2.2. Collision Risk Reduction

The presence of multiple spacecraft maneuvering at relatively small distances

increases the risk of possible collisions, especially for rendezvous maneuvers.

Having the same controller driving each chaser to the rendezvous state with

respect to the target yields a similar behavior in the relative path that a chaser305

follows to reach it, and given the state feedback term in the control law it is
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Figure 2: Modified Coordinate Systems.

expected that the control effort is reduced as the chaser approaches the tar-

get. Therefore, if a rendezvous maneuver is required, some chasers could follow

similar paths and will be maneuvering in close proximity to the target for a

significant portion of the maneuver, increasing the collision risk.310

To reduce the collision risk, this undesired behavior could be addressed by

introducing an along-orbit formation as an intermediate stage where the ∆di’s

represent “parking” positions. Then, once the positions of the chasers are stable

along the same orbit, the ∆di’s can be sequentially reduced to drive each chaser

to the rendezvous state in a more controlled way when in close proximity to the315

target.

6. Simulation Results

To validate the adaptive controller designed in Section 3, a rendezvous ma-

neuver with respect to a known target and an along-orbit formation with respect

to an unknown target are numerically simulated, both involving six chasers. The320
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number of spacecraft has been selected so that the plots showing the results are

readable. Nevertheless, the algorithm does not change when scaling the size of

the fleet. In all simulations the dynamics of each spacecraft are individually

simulated using (1)-(3), and the real (unknown for the controller) atmospheric

density is obtained using the NRLMSISE-00 model to compute the drag and lift325

accelerations. The initial conditions are selected such that the target spacecraft

is in a circular orbit similar to that of the International Space Station (ISS), see

Table 1. The initial conditions of the chasers are randomly generated by varying

the semi-major axis at, eccentricity et and true anomaly νt of the target so that

the inter-spacecraft distance satisfies Assumption 1, while the RAAN (Ωt), ar-330

gument of perigee (ωt) and orbit inclination (it) remain unchanged for all space-

craft. The bounds for such variations are ai = at ± 500[m], ei = et + 3× 10−5,

and νi = νt ± 0.2 [deg], respectively.

at [km] et it [deg] Ωt [deg] ωt [deg] νt [deg]

6.7281× 103 0 51.94 206.36 101.07 108.08

Table 1: Initial conditions for the target spacecraft

The gain KLQR was computed using the lqr command in Matlab with the

SS dynamics. The values for the matrices Q and R are shown in Table 2.335

The solution of the ARE is used for P and the adaptive gain Γ is also shown

in Table 2. The control parameters associated with the ICL portion are shown

in Table 3. The physical parameters for all spacecraft are identical (Table 4)

and the values for Ta and Ts required to compute the drag (unknown for the

controller) and lift coefficients are those used in [15]. The initial guess for Θ̂ is340

Θ̂0 = [6.8, 0, 0, 6.8, 0, 0]T × 10−4 and Θ̂0 = [6.8, 0, 0, 1.1, 0, 0]T × 10−4 for the

cases with cooperative and unknown target, respectively.
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Parameter Known target Unknown Target

Q diag(30, 1, 3, 2) diag(180, 1, 1.8, 1)

R 5× 1015 6× 1016

Γ (×10−20) diag(45, 15, 15, 45, 15, 15) diag(30, 30, 30, 0.3, 0.3, 0.3)

Table 2: Controller parameters. Two sets of gains are presented, one for the case of a

cooperative target and the other for maneuvers with respect to an unknown target

Parameter Known Target Unknown Target

λ̄ 400 500

KICL (×1010) diag(3, 30, 30, 3, 30, 30) diag(5, 100, 100, 10, 80, 80)

Table 3: Controller parameters for the ICL portion. Two sets of gains are presented,

one for the case of a cooperative target and the other for maneuvers with respect to

an unknown target

St, Si [m2] mt, mi [kg] St,max, Si,max [m2] St,min, Si,min [m2]

0.2 1.5 0.5 0.01

Table 4: Spacecraft physical parameters. To simulate the unknown target, the same

physical parameters were used to propagate its dynamics but are unknown for the

controller.

6.1. Rendezvous Maneuver Results

For the rendezvous maneuver, the target spacecraft is assumed to be known

and independently maneuvering its drag surfaces. However, it broadcasts its345

current cross-sectional area to all chasers. Figure 3 shows each in-plane relative

state as a function of time. The controller required 120 hours to drive all chasers

to the rendezvous state. The maneuver time was computed as the time that

all chasers required to enter and remain inside a circle with radius 20 meters

around the target.350

The cross-sectional area that all the spacecraft required to perform the ren-

dezvous maneuver are shown in Figure 4. Although the R matrix in the LQR
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Figure 3: In-plane relative states as function of time for the rendezvous maneuver. The

relative states are regulated between each chaser/target pair in 120 hours.

problem has a high value to reduce the required control effort, saturation was

applied to the cross-sectional area of each spacecraft to ensure that the applied

control inputs are always within the physical limits.355

Figure 4: Cross-sectional areas required for the rendezvous maneuver. The control

input ū is saturated to ensure that the cross-sectional area does not exceed the physical

limits of the DMD.
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To reduce the possibility of having maneuvers where the threshold λ̄ was

not reached by any chaser, a relatively small value is set for this parameter.

Additionally, to keep improving the convergence rate of the estimations when

possible, the ICL portion of the adaptive update law is updated with new input-

output data pairs every time λmin

{∑Ns

i=1 YT
i Yi

}
increases, even after time360

t = T . The resulting behavior of these eigenvalues is shown in Figure 5.

Figure 5: Behavior of each λmin

{∑Ns
i=1 Y

T
i Yi

}
for the rendezvous maneuver. Thresh-

old set to λ̄ = 400, input-output data added after t > T to improve convergence rate

when possible.

The behavior over time of the vector Θ̂ is shown component-wise in Figures

6 and 7 for parameters associated with the chasers and the target, respectively.

Since all the chasers satisfied condition (39), these results indicate that there is

a higher level of agreement in the estimations of the first and fourth entries of365

Θ̂. These two entries are the most important parameters given that they are

associated with the zero frequency level of the atmospheric density (D1,i and

D1,t) which are in general greater than those associated with the frequency Ω

(D2,i, D2,t, D3,i and D3,t). The small differences in the values of convergence

can be attributed to the approximation made when modeling the density as in370

(21) and using the approximated SS relative dynamics.
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The comparison between the real parameters (ρkC
k
DV

2
r,k, k = i, t) and the

reconstruction of the estimated parameters (ρ̂kĈ
k
D

ˆV 2
r,k, k = i, t) are shown in

Figures 8-11. These results show that the ICL-based controller is capable of

adjusting the parameters to approximate their real values. The algorithm pro-375

vides useful information about the uncertain parameters without relying on

highly complex atmospheric models, forecasts and/or iterative algorithms.

Figure 6: Behavior of estimations associated with each chaser over time for the ren-

dezvous maneuver. Greater level of agreement can be observed in the estimations of

Θ̂(1) = D1,iC
i
DV

2
r,i, which in general has higher order of magnitude that the other two

uncertain parameters associated with each chaser. Residual errors can be attributed

to the approximations made during the controller design.

6.2. Along-Orbit Formation Results

For the along-orbit formation, the target spacecraft is assumed to be un-

known. In this case, the chasers are required to perform an along-orbit for-380

mation centered on the target with inter-spacecraft separation of 1 km. The

corresponding slot for each chaser, i.e. its ∆νi, was randomly selected. In addi-

tion to the individual nonlinear dynamics and the NRLMSISE-00 atmospheric

model, a variation of ±10% with frequency of 1 RPM is applied to the bal-
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Figure 7: Behavior of estimations associated with the target over time for the ren-

dezvous maneuver. Greater level of agreement can be observed in the estimations of

Θ̂(4) = D1,tC
t
DV

2
r,t, which in general has higher order of magnitude that the other two

uncertain parameters associated with the Target. Residual errors can be attributed to

the approximations made during the controller design.

listic coefficient Ct
b to simulate a tumbling unknown target. Figure 12 shows385

each in-plane relative state as a function of time. The maneuver time for the

along-orbit formation maneuver was 100 hours. For convenience, the relative

states have been plotted with respect to an LVLH coordinate system centered

on the target so that the along-orbit separations (mostly along ∆ŷ) could be

observed.390

Although the chasers only modulate their cross-sectional areas Si, the con-

trol inputs are plotted in Figure 13 as ballistic coefficients so that they can be

compared to that of the unknown target. Saturation has also been applied to

ensure the control inputs are within the bounds. The control inputs show that

each chaser spacecraft has to keep maneuvering even after reaching its desired395

slot to compensate for the natural drifting with respect to the target.

The behavior of each λmin

{∑Ns

i=1 YT
i Yi

}
is shown in Figure 14 and the

behavior of Θ̂ over time is shown in Figures 15 and 16 for parameters asso-
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Figure 8: Real (solid blue line) vs reconstructed estimated parameters (dashed red

line) associated with each chaser for the rendezvous maneuver. The real parameter

was obtained using the NRLMSISE-00 atmospheric model. Amplitude in [kg/(ms2)].

Figure 9: Zoomed-in view for the last 10 orbits of the real (solid blue line) vs recon-

structed estimated parameters (dashed red line) associated with each chaser for the

rendezvous maneuver. Amplitude in [kg/(ms2)].

ciated with each chaser and the target, respectively. Similar to the results for

the rendezvous maneuver, the greatest estimation agreement is observed in the400
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Figure 10: Real (solid blue line) vs reconstructed estimations (dashed lines) of the

uncertain parameters of the target made by each chaser for the rendezvous maneuver.

The real parameter was obtained using the NRLMSISE-00 atmospheric model.

Figure 11: Zoomed-in view for the last 10 orbits of the real (solid blue line) vs recon-

structed estimations (dashed lines) of the uncertain parameters of the target made by

each chaser for the rendezvous maneuver.

28



Figure 12: In-plane relative states as function of time for the along-orbit formation

maneuver. The formation is achieved in 100 hours, inter-spacecraft separation of

1 km can be observed mainly in the ∆y plot.

Figure 13: Ballistic coefficients required for the along-orbit formation maneuver. The

control input ū is saturated to ensure that the cross-sectional area does not exceed

the physical limits of the DMD. Chasers need to keep maneuvering to maintain their

desired relative positions.
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parameters associated with the zero frequency of the atmospheric density. On

the other hand, the estimated parameters associated with the frequency Ω show

more disagreement between chasers.

The comparison between the real parameters (ρiC
i
DV

2
r,i, ρtC

t
bV

2
r,t) and the

reconstruction of the estimated parameters (ρ̂iĈ
i
D

ˆV 2
r,i, ρ̂tĈ

t
b

ˆV 2
r,t) can be ob-405

served in Figures 17-20. The reduction in estimation performance compared

to the cooperative target case can be attributed to the additional uncertainty

in the physical parameters of the target and its tumbling behavior. Most of

the performance reduction can be observed in the underestimation of the vari-

ations due to J2 perturbation and day/night changes. However, the algorithm410

has shown estimation improvement from the a priori values of the uncertain

parameters.

Figure 14: Behavior of each λmin

{∑Ns
i=1 Y

T
i Yi

}
over time for the along-orbit formation

maneuver. Threshold set to λ̄ = 500, input-output data added after t > T to improve

convergence rate when possible.

7. Conclusion

An ICL-based adaptive control strategy has been developed and validated for

rendezvous and along-orbit formation maneuvers with respect to a single known415
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Figure 15: Behavior of estimations associated with each chaser over time for the along-

orbit formation maneuver. Greater level of agreement can be observed in the estima-

tions of Θ̂(1) = D1,iC
i
DV

2
r,i, which in general has higher order of magnitude that the

other two uncertain parameters associated with each chaser. Residual errors can be

attributed to the approximations made during the controller design.

or unknown target. Numerical simulations demonstrate the performance of the

developed controller. Parameters such as the local atmospheric densities, drag or

ballistic coefficients and the magnitude of the spacecraft-atmosphere velocities

are considered uncertain and the developed controller compensates for them.

Additionally, when the system is sufficiently excited, the controller is able to420

estimate the values of these parameters on-line. The accuracy of the resulting

parameter estimations have shown to be sufficient to determine their order of

magnitude and the variations induced by the atmospheric density due to the

J2 perturbation and day/night changes. Errors in estimation can be attributed

to the approximations made when modeling the atmospheric density, the use425

of the SS relative dynamics and (when unknown) the presence of a tumbling

target. The developed algorithm is implementable on-board a CubeSat given

that all the estimations are made online using simple integration algorithms

without requiring large data sets nor computationally expensive operations.
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Figure 16: Behavior of estimations associated with the target over time for the for-

mation maneuver. Greater level of agreement can be observed in the estimations of

Θ̂(4) = D1,tC
t
bV

2
r,t, which in general has higher order of magnitude that the other two

uncertain parameters associated with the Target. Residual errors can be attributed to

the approximations made during the controller design and the tumbling target.
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Figure 17: Real (solid blue line) vs reconstructed estimated parameters (dashed red

line) associated with each chaser for the formation maneuver. The real parameter was

obtained using the NRLMSISE-00 atmospheric model. Amplitude in [kg/(ms2)].

Figure 18: Zoomed-in view for the last 10 orbits of the real (solid blue line) vs recon-

structed estimated parameters (dashed red line) associated with each chaser for the

formation maneuver. Amplitude in [kg/(ms2)].
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Figure 19: Real (solid blue line) vs reconstructed estimations (dashed lines) of the

uncertain parameters of the target made by each chaser for the formation maneuver.

The real parameter was obtained using the NRLMSISE-00 atmospheric model.

Figure 20: Zoomed-in view for the last 10 orbits of the real (solid blue line) vs recon-

structed estimations (dashed lines) of the uncertain parameters of the target made by

each chaser for the formation maneuver.
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