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Abstract

This paper presents a differential atmospheric drag-based control algorithm for

rendezvous with a non-cooperative target in Low Earth Orbit. The challenge

of using a differential input that requires knowledge of physical parameters of

the involved spacecraft, is addressed by designing a Lyapunov-based adaptive

controller that compensates for the uncertain ballistic coefficient of the tar-

get spacecraft as well as the time-varying atmospheric density and velocity of

the spacecraft relative to the atmosphere. Numerical simulations using the

Schweighart-Sedwick relative dynamics are presented to validate the controller

design. Additionally, simulations more accurate dynamics for each spacecraft

along with the NRLMSISE-00 model of atmospheric density are presented to

evaluate the performance of the controller under nonlinearities and input satu-

ration.

Keywords: Differential Drag, Adaptive, Atmospheric Density, Drag

Coefficient, Rendezvous, Ballistic Coefficient.

1. Introduction

The increasing number of spacecraft in Low Earth Orbit (LEO) has been a

matter of concern for orbital debris mitigation. A large number of satellites in

LEO are CubeSats with very limited propulsion capabilities to accomplish their
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intended missions. Once these satellites are out of operation or malfunctioned,5

it is desirable to have them safely removed from orbit and respecting the NASA

requirement for LEO satellites to de-orbit within 25 years [1]. This paper focuses

on the challenge of performing propellant-less rendezvous with a non-cooperative

spacecraft once it has been detected and identified as a potential target.

The acceleration due to differential drag between two satellites in LEO has10

been identified as a potential resource to perform relative maneuvers. The

development of differential drag-based strategies to perform relative maneuvers

has been an active focus of research since it was first presented back in 1989 [2]

and has acquired even more importance due to the introduction of the CubeSat

standard. One of the major challenges of using differential drag to perform15

formation and rendezvous maneuvers is that its performance is highly dependent

on the knowledge of parameters that have important levels of uncertainty, such

as the atmospheric density and drag coefficient.

Open-loop analytical algorithms have been developed for relative maneu-

vers between controllable spacecraft [2, 3, 4, 5]. On the other hand, a wide20

variety of closed loop control algorithms have also been developed for this pur-

pose [6, 7, 8, 9]. Implementations of differential drag-based algorithms for for-

mation keeping maneuvers such as those of the ORBCOMM [10] and Planet

Labs [11] constellations have demonstrated its effectiveness. However, since

the computation of the differential drag acceleration requires knowledge of the25

area-to-mass ratio of the involved spacecraft, namely their ballistic coefficient,

the development of control algorithms to perform differential drag-based ren-

dezvous maneuvers with a spacecraft with uncertain ballistic coefficient is still a

matter of study. Thruster-based algorithms for rendezvous with uncooperative

spacecraft have been presented in different works such as [12, 13, 14, 15], where30

autonomous relative navigation and guidance strategies have been presented

and even demonstrated in orbit [16].

The Drag De-Orbit Device (D3), originally designed at University of Florida

ADvanced Autonomous MUltiple Spacecraft (ADAMUS) laboratory for space-

craft controlled re-entry [17, 18, 19], has also shown to have potential for space-35
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craft relative maneuvers [3, 9] and passive attitude stabilization [20, 21]. Moti-

vated by these efforts and the potential of the differential drag for saving propel-

lant, we present a novel approach to perform differential drag-based rendezvous

maneuvers with an unknown target using a D3-equipped 2U CubeSat.

The D3 can be installed in the anti-ram face of the CubeSat and has four40

repeatedly deployable/retractable drag surfaces offset 90 degrees from each other

and inclined 20 degrees, a simplified schematic of the D3 device is shown in

Figure 1. The proposed control algorithm uses a Lyapunov-based adaptive

update law to compensate for the uncertain time-varying atmospheric density,

velocity of the spacecraft relative to the atmosphere and ballistic coefficient of45

the target spacecraft, to drive the controllable (chaser) spacecraft to the position

of the target. The maneuvers are limited to be between spacecraft in circular

LEO orbits, in the same orbit plane and for small inter-spacecraft distances

compared with the semi-major axis of the chaser spacecraft. Additionally, it is

assumed throughout the paper that the relative states are measurable and the50

ballistic coefficient of the target is somewhere between maximum and minimum

limits for the ballistic coefficient of the chaser spacecraft, i.e. a rough estimate of

this parameter is available a priori to determine the feasibility of the maneuver.

The main contributions of this work are:

• An adaptive control policy that ensures asymptotic stability of the in-55

plane relative states despite uncertainty in the physical parameters of the

target spacecraft.

• The adaptive update laws additionally consider the unknown time-varying

atmospheric density and magnitude of spacecraft-atmosphere relative ve-

locity for both spacecraft.60

• A strategy that uses a propellant-less differential control input with respect

to an unknown spacecraft.

• Controller design validation using numerical simulations with higher fi-

delity dynamics and additional perturbations for each spacecraft.
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Figure 1: Drag De-orbit Device (D3) Schematic.

• A control law that is completely implementable on-board with very low65

computational cost since it does not use iterative algorithms nor complex

atmospheric models.

The paper is organized as follows: Section 2 presents the dynamic models

used for control design and numerical simulations, Section 3 shows the control

design, Section 4 presents the corresponding stability analysis and Sections 570

and 6 show the numerical simulations and conclusions, respectively.

2. Dynamics Modeling

2.1. Spacecraft Relative Dynamics

The acceleration experienced by a spacecraft in LEO under the gravitational

influence of the Earth as well as the J2 perturbation and atmospheric drag can75

be expressed in the Earth-Centered Inertial (ECI) coordinate system as follows
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ẍ = −GM⊕
r3

x+
3

2

(
J2GM⊕R

2
⊕

r4

)(
x

r

(
5z2

r2
− 1

))
+ r̈drag,x (1)
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where r̈drag = [r̈drag,x, r̈drag,y, r̈drag,z]
T

is the acceleration due to atmospheric

drag expressed in the ECI coordinate system, G is the universal gravitational

constant, r = [x, y, z]
T

is the ECI position of the spacecraft, J2 is the coefficient

that represents the second order harmonic of gravitational potential field of the80

Earth, M⊕ and R⊕ are the mass and radius of the Earth, respectively.

Assumption 1. The chaser spacecraft is ram-aligned, the inter-spacecraft dis-

tance is small compared with its orbit radius and the two involved spacecraft

are in the same circular LEO orbit plane.

Under assumption 1, the relative motion between the two spacecraft can85

be expressed in the Local-Vertical/Local-Horizontal LVLH coordinate system

(figure 2) using the linear Schweighart-Sedwick (SS) [22] dynamic model that

includes the influence of the J2 perturbation as

∆ẍ = 2 (Ωc) ∆ẏ +
(
5c2 − 2

)
Ω2∆x+ ux (4)

∆ÿ = −2 (Ωc) ∆ẋ+ uy (5)

∆z̈ = −q2∆z + 2lq cos (qt+ ∅) + uz (6)

where Ω is the constant angular velocity of the orbit of the chaser, ∆r =

[∆x,∆y,∆z]T is the LVLH position of the target, u = [ux, uy, uz]T is the

control input (differential drag), and c is defined as

c =

√
1 +

3J2R2
⊕

8r2ref
(1 + 3 cos (2iref )) (7)

where rref and iref are the radius and inclination of the orbit of the chaser.
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Figure 2: LVLH Coordinate System.

The parameters ∅, l and q in the out-of-plane equation of motion 6 are defined90

in [22].

Assumption 2. The chaser spacecraft is capable of measuring the in-plane rel-

ative states of the target using sensors and estimation techniques, e.g. similar

to those in [12, 16].

The LVLH coordinate system can then be defined to be attached to the95

chaser spacecraft with origin at its center of mass and defined as follows: The

∆̂x axis points from the center of the Earth towards the origin of the system,

the ∆̂z axis is aligned with the orbit angular momentum vector and the ∆̂y

completes a right-hand Cartesian coordinate system.
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2.2. Differential Drag100

The chaser D3-equipped spacecraft is capable of changing its experienced

drag acceleration by repeatedly extending/retracting the drag surfaces (Figure

1). The acceleration due to atmospheric drag acting on a spacecraft can be

expressed as

r̈drag = −ρ(t)CbV
2
r V̂r (8)

where ρ(t) represents the time-varying atmospheric density and Cb is the

spacecraft’s ballistic coefficient defined as

Cb =
SCD

2m
, (9)

the parameter CD is the drag coefficient, S and m are the total cross-sectional105

area and mass of the spacecraft, respectively. Then, the ballistic coefficient of

the chaser spacecraft can be changed by modulating the cross-sectional area S,

i.e. extending/retracting the drag surfaces.

The vector Vr represents the velocity of the spacecraft relative to the at-

mosphere which is assumed to rotate with the Earth and is defined as follows110

Vr = ṙ − ω⊕ × r (10)

where ω⊕ is the angular velocity of the Earth.

The auxiliary control input u, namely the differential drag, is then defined

as

u = ∆r̈drag = r̈drag,t − r̈drag,c (11)

where the subscripts c and t make reference to the chaser and the target

spacecraft, respectively.115

The atmospheric density ρ(t) is the greatest source of uncertainty in the

computation of the experienced drag acceleration due to its dependence on sev-

eral environmental variables such as geomagnetic and solar activity, as well as
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to the orbital motion. There exist several models to estimate the local atmo-

spheric density with different levels of uncertainty, some are function of the120

altitude and theoretical models of the upper atmosphere such as the 1976 U.S

Standard [23] and the Harris-Priester [24] models, whereas more complex em-

pirical models, such as the NRLMSISE-00 [25] are function of the spacecraft’s

position, date, time, solar and geomagnetic indices. However, even the more

complex atmospheric models require considerable computational effort and still125

provide limited accuracy [26]. The latter motivates the design of adaptive con-

trollers that do not require information about such uncertain parameters in

order to guarantee the maneuver success.

3. Control Design

3.1. Control Objective130

The control objective is to complete a rendezvous maneuver between a

controllable D3-equipped spacecraft (chaser) and a non-cooperative spacecraft

(target), using the differential drag as the only control input without relying

on precise information about the physical parameters of the unknown target

(Cb,t). Additionally, the auxiliary control input u includes uncertainty in the135

time-varying atmospheric density ρ(t) and in the magnitude of the spacecraft-

atmosphere relative velocity Vr.

Assumption 3. The ballistic coefficient of the chaser Cb,c is known provided that

its physical parameters are known, the time-varying local atmospheric density

ρ(t) and the (constant) magnitude of the velocity relative to the atmosphere Vr140

are uncertain for both spacecraft.

Assumption 4. Tthe velocity of the spacecraft relative to the atmosphere Vr

is opposite to the LVLH’s ∆ŷ direction.

Considering assumptions 3 and 4, the differential drag can be written as

u =
(
ρc(t)V

2
r,cū(t)− ρt(t)V 2

r,tCb,t

)
∆ŷ (12)
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where ū(t) = Cb,c represents the only parameter that can be modified in the145

control input. Therefore, the only nonzero component of u in equations 4-

6 is uy = ρc(t)V
2
r,cū(t) − ρt(t)V 2

r,tCb,t. In [27], the differential drag between

two spacecraft with constant ballistic coefficient was modeled as a time-varying

function with its two principal Fourier components at 0 and Ω. Therefore, the

behavior over time of the differential drag was dominated by the variation of150

the atmospheric density. This motivates us to model the parameter ρi(t) as

ρi(t) = D1,i +D2,i sin(Ωt) +D3,i cos(Ωt) , i = c, t (13)

where D1,i, D2,i, D3,i ∈ R are unknown constants.

3.2. Control Development

From the SS relative dynamics (equations 4-6) and equation 12, since the ∆z

dynamics are decoupled, only the in-plane (∆x-∆y) motion can be controlled155

by means of differential drag. The state space representation of the in-plane

relative dynamics is


∆ẋ

∆ẍ

∆ẏ

∆ÿ


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Ẋ

=


0 1 0 0

b 0 0 a

0 0 0 1

0 −a 0 0


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A


∆x

∆ẋ

∆y

∆ẏ


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X

+


0

0

0

1


︸︷︷︸
B

uy (14)

where a = 2Ωc and b = (5c− 2)Ω2 are known positive constants.

Let us define two linear parameterizations of the terms in the auxiliary con-

trol input uy as

Y1Θ1 = ρc(t)V
2
r,cū(t) (15)

Y2Θ2 = −ρt(t)V 2
r,tCb,t (16)

Substituting equations 15 and 16 in the definition of uy yields

uy = Y1Θ1 + Y2Θ2 (17)
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In equation 15, Y1 ∈ R3 denotes the first measurable regression matrix

Y1(ū(t),Ω) =
[
ū(t) ū(t) sin(Ωt) ū(t) cos(Ωt)

]
(18)

and the first vector of uncertain parameters Θ1 ∈ R3 is

Θ1 =


D1,cV

2
r,c

D2,cV
2
r,c

D3,cV
2
r,c

 (19)

On the other hand, in equation 16, Y2 ∈ R3 denotes the second measurable

regression matrix

Y2(Ω) =
[
−1 −sin(Ωt) −cos(Ωt)

]
(20)

and the second vector of uncertain parameters is

Θ2 =


D1,tV

2
r,tCb,t

D2,tV
2
r,tCb,t

D3,tV
2
r,tCb,t

 . (21)

Considering their physical meaning, the uncertain parameters in the vectors Θ1

and Θ2 can upper and lower be bounded as

Θ1,j < Θ1,j < Θ̄1,j (22)

Θ2,j < Θ2,j < Θ̄2,j (23)

where Θ1,j (Θ2,j) is the jth component of Θ1 (Θ2), and Θ1,j ,Θ2,j , Θ̄1,j , Θ̄2,j ∈160

R denote the known constant bounds for the corresponding parameter.

The estimates of equations 15 and 16 are

Y1Θ̂1 = ρ̂c(t) ˆV 2
r,cū(t) (24)

Y2Θ̂2 = −ρ̂t ˆV 2
r,tĈb,t (25)

where Θ̂1, Θ̂2 ∈ R3 are the estimates of Θ1 and Θ2, ρ̂i(t) = D̂1,i +

D̂2,isin(Ωt) + D̂3,icos(Ωt), D̂1,i, D̂2,i, D̂3,i,
ˆV 2
r,i and Ĉb,t are the estimates of

D1,i, D2,i, D3,i, V
2
r,i and Cb,t, with i = c, t, respectively.
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Based on equations 14, 24, 25, and the subsequent stability analysis, the

controller is designed as

ū(t) =
(
ρ̂c(t) ˆV 2

r,c

)−1 (
ρ̂t(t)

ˆV 2
r,tĈb,t −KLQRX

)
(26)

where KLQR ∈ R4 is a vector of constant gains and X ∈ R4 is the measurable

state vector defined in equation 14. The estimation errors Θ̃1 and Θ̃2 are

defined as

Θ̃1 = Θ1 − Θ̂1 (27)

Θ̃2 = Θ2 − Θ̂2 (28)

Therefore, equation 17 can be rewritten as

uy = Y1Θ̃1 + Y1Θ̂1 + Y2Θ̃2 + Y2Θ̂2 (29)

The adaptive update laws ˙̂Θ1 and ˙̂Θ2 are defined as

˙̂Θ1 = proj
(
2Γ1Y

T
1 B

TPTX
)

(30)

˙̂Θ2 = 2Γ2Y
T
2 B

TPTX (31)

the vector B ∈ R4 is defined in equation 14, P ∈ R4×4 is a symmetric positive165

definite matrix defined in the subsequent stability analysis, Γ1,Γ2 ∈ R3×3 are

the adaptation gains for Θ̂1 and Θ̂2, respectively. The operator proj(·) is

the continuous projection algorithm developed in [28] used here to keep Θ̂1(t)

within the bounds shown in equations 22, this is especially important to ensure

that the inverse of
(
ρ̂c(t) ˆV 2

r,c

)
, which is present in the control law of equation170

26, does not cross zero.

4. Stability Analysis

Theorem 1. Given the relative dynamics in equation 14 along with the adaptive

update laws in equations 30 and 31, the controller in equation 26 yields global

asymptotic regulation in the sense that

lim
t→∞

‖X ‖→ 0. (32)
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Proof. Let V : R10 → R≥0 be a candidate Lyapunov function defined as

V (η) = XTPX +
1

2
Θ̃1

T
Γ−11 Θ̃1 +

1

2
Θ̃2

T
Γ−12 Θ̃2 (33)

where the composite state vector η ∈ R10 is

η =
[
XT Θ̃1

T
Θ̃2

T
]T

(34)

For analysis purposes the auxiliary input uy can be divided in two terms as

follows

uy = uFB + uAD (35)

where uFB ∈ R is a state feedback term and uAD ∈ R is a term used for

adaptation purposes.

From the in-plane SS dynamics in equation 14, the rank of the controllability

matrix can be computed to observe that the system is controllable with the single

input uy. Motivated by the fact that this is an underactuated system with a

single input and four states to be regulated, and by the results obtained in

[9], a Linear Quadratic Regulator (LQR) is designed to obtain a state feedback

control law that regulates all states of the SS dynamics to zero while minimizing

the cost function

J =

∫ ∞
0

(
XTQX +Ru2FB

)
dt (36)

where Q ∈ R4×4 is a positive definite weight matrix used to specify the desired

performance of each state in X and R ∈ R>0 is a weight used to penalize the

control effort. The state feedback control law is defined as

uFB = −KLQRX (37)

where KLQR ∈ R4 is a constant feedback gain vector obtained from solving175

the Algebraic Riccati Equation (ARE) [29].

Plugging-in the dynamics from equation 14, the definition of the auxiliary

control input uy from equation 35 and the state feedback control law from

equation 37 in the time derivative of equation 33 yields

V̇ (η) = XT (PA∗+A∗TP )X+2XTPBuAD−Θ̃1
T

Γ−11
˙̂Θ1−Θ̃2

T
Γ−12

˙̂Θ2 (38)
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where A∗ = A − BKLQR and A ∈ R4×4 is defined in equation 14. Note

that A∗ is Hurwitz since KLQR is obtained by solving the LQR problem.

Therefore, a symmetric positive definite matrix Q1 ∈ R4×4 can be chosen so

that the Lyapunov equation 39 is satisfied.

PA∗ +A∗TP = −Q1 (39)

Then, V̇ (η) can be rewritten as

V̇ (η) = −XTQ1X + 2XTPBuAD − Θ̃1
T

Γ−11
˙̂Θ1 − Θ̃2

T
Γ−12

˙̂Θ2 (40)

Solving equation 35 for uAD and plugging-in uy from equation 29 yields

uAD = Y1Θ̃1 + ρ̂c(t) ˆV 2
r,cū(t) + Y2Θ̃2 − ρ̂t(t) ˆV 2

r,tĈb,t +KLQRX (41)

Finally, substituting equations 26, 30, 31 and 41 in the Lyapunov derivative we

obtain

V̇ (η) = −XTQ1X (42)

From equation 42, V̇ is negative semi-definite, indicating that V ∈ L∞. There-

fore, X, Θ̃1, Θ̃2 ∈ L∞, and then η ∈ L∞. Using equations 27, 28, Θ̂1,

Θ̂2 ∈ L∞. Since sin(Ωt), cos(Ωt) ∈ L∞ by definition, then the estimated at-

mospheric density ρ̂c(t), ρ̂t(t) ∈ L∞. Therefore, the controller in equation 26,

ū ∈ L∞. Since ū ∈ L∞, using equation 29, Y1 ∈ L∞ and then Ẋ ∈ L∞. Since

Ẋ ∈ L∞, then X is uniformly continuous and from equation 42, X ∈ L2.

Therefore, by Barbalat’s lemma [30]

lim
t→∞

‖X ‖→ 0 (43)

Note that this result does not guarantee that the estimated parameters Θ̂1

and Θ̂2 converge to their true values. In fact, it only ensures that the estimation

errors Θ̃1 and Θ̃2 remain bounded during the maneuver. Therefore, the control

design presented in this paper is only intended to provide guarantee of states180

regulation without ensuring on-line parameter estimation.
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5. Numerical Simulations

In order to validate the developed control law (equation 26), the numerical

simulations are divided in two cases. The first case evaluates the performance

of the control law using the SS dynamics used for the controller design. On the185

other hand, the second case evaluates the controller performance using the non-

linear dynamics of equations 1-3 for each spacecraft as well as some additional

sources of uncertainty. In both cases, the initial conditions are selected such that

the chaser spacecraft is in a circular orbit similar to that of the International

Space Station (ISS) (see table 1), while the initial conditions of the target are190

randomly selected by varying the chaser’s semi-major axis ac, eccentricity ec

and true anomaly νc so that the inter-spacecraft distance satisfies assumption

1, while the RAAN (Ωc), argument of perigee (ωc) and orbit inclination (ic)

remain unchanged for both spacecraft. The bounds for such variations are as

follows195

• at = ac ± 500 [m]

• et = ec + 5× 10−5

• νt = νc ± 0.2 [deg]

ac [km] ec ic [deg] Ωc [deg] ωc [deg] νc [deg]

6.7131× 103 0 51.94 206.36 101.07 108.08

Table 1: Initial conditions for the chaser spacecraft

The gain KLQR has been computed using the lqr command in Matlab

with the SS dynamics (equation 14) and the values for the matrices Q and R200

obtained from [9] and shown in table 2. The solution of the ARE is used as

value for matrix P and the adaptive gains Γ1 and Γ2 are also shown in table 2.

The physical parameters for the chaser spacecraft and for the unknown target

used in the numerical simulations are presented in table 3.
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Q R Γ1 Γ2

diag(180, 1, 1.8, 1) 1.8×1016 1× 10−21I3×3 1.5× 10−21I3×3

Table 2: Controller parameters.

St [m2] mt [kg] Sc,max [m2] Sc,min [m2] mc [kg]

0.2 1.5 0.5 0.01 3

Table 3: Spacecraft physical parameters.

5.1. Results with SS dynamics205

The numerical simulations using the SS dynamics are intended to evaluate

the controller performance under the same assumptions made during the con-

trol design. However, in order to keep the maneuver feasible for a D3-equipped

chaser spacecraft, saturation is applied to the control input ū (ballistic coeffi-

cient) so that the cross sectional area Sc is always between Sc,min and Sc,max.210

Given that the relative states do not provide enough information to feed an at-

mospheric density model, values for the parameters D1,i, D2,i and D3,i (shown

in table 4) were found offline by fitting the model of equation 13 to density

data obtained from the NRLMSISE-00 atmospheric model when propagating

the chaser spacecraft with the drag surfaces deployed halfway. Although this is215

only an approximation, it is important to note that the density is only used to

propagate the relative dynamics and not for the control law.

D1,i [kg/m3] D2,i [kg/m3] D3,i [kg/m3]

3.3319× 10−12 −7.1895× 10−13 1.3008× 10−13

Table 4: Parameter values for density model.

The resulting relative states from the numerical simulation are shown in

Figure 3. The plots in the left show the behavior of relative states over time

while the one in the right shows the relative path in the LVLH coordinate system.220

From these results, it can be observed that the relative states converge to zero

and the total maneuver time was 60 hours. Figure 4 shows the control command

15



(chaser’s ballistic coefficient) as well as the unknown ballistic coefficient of the

target over time. The control command plot shows that the controller is able

to adapt so that at the end of the maneuver the differential drag is zero.225

Figure 3: Resulting relative states using the SS dynamics.

The behavior of the estimated parameters Θ̂1 and Θ̂2 is shown in Figure 5.

Although the stability analysis does not ensure that the estimated parameters

converge to the real values, they remain bounded and converge to some values

that enable the controller to drive the system to the origin.

5.2. Results with complete dynamics230

The simulations with the spacecraft complete dynamics propagates the equa-

tions 1-3 individually for each spacecraft. The atmospheric density is now locally

computed for each spacecraft using the NRLMSISE-00 model and the rotation

of the atmosphere with the Earth is also taken into account to compute the

vector Vr for each spacecraft. Additionally, a 5 [RPM ] sinusoidal perturbation235
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Figure 4: Control command using the SS dynamics.

of 10% the magnitude of Cb,t is introduced to simulate a tumbling target. At

each time step during the propagation the relative states are computed so that

the control and update laws can be computed.

Figure 6 shows the resulting relative states from the simulation. From this

figure, it is observed that the adaptive controller is able to regulate the relative240

relative states even using the complete dynamics and the total maneuver time in

this case was 62 hours. Figure 7 shows the control command (ballistic coefficient

of the chaser) as well as the ballistic coefficient of the target. From the control

command plot, the ballistic coefficient of the chaser (Cb,c) converges to the

mean value of Cb,t so that the differential drag at the end of the maneuver is245

as close as possible to zero considering that Cb,t was modeled as a constant

parameter in the controller design.

Finally, the behavior of the estimated parameters Θ̂1 and Θ̂2 over time
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Figure 5: Estimated parameters using the SS dynamics.

is shown in Figure 8. As in the case with the SS dynamics, the estimated

parameters remain bounded and converge to some values that are not necessarily250

the real ones. It is also important to note that in this case there are no real

values for the parameters D1,i, D2,i, D3,i, or constant values for Vr,i or Cb,t

because these were approximations made in the controller design. However,

these assumptions have shown to be sufficient for the purpose of regulating the

in-plane relative dynamics.255

6. Conclusion

A novel Lyapunov-based adaptive controller has been designed to address the

problem of performing differential drag-based rendezvous with a non-cooperative

target in LEO. The control design includes adaptive update laws to ensure reg-

ulation of the relative states in presence of uncertain time-varying atmospheric260
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Figure 6: Resulting relative states using the complete dynamics.

density, target ballistic coefficient and magnitude of the spacecraft’s velocity

with respect to the atmosphere. Numerical simulations were performed using

the Schweighart-Sedwick equations of relative motion as well as using a more

complete dynamic model which does not include assumptions made during the

controller design. The results in both cases have shown that the adaptive control265

law successfully regulates the in-plane relative states even under input satura-

tion. Future efforts will include exploring the use of new adaptive update laws

that guarantee some level of on-line parameter estimation.
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Figure 7: Control command using the complete dynamics.
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