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Abstract

In this paper, the problem of controlling the attitude of a CubeSat in low

Earth orbit using only the environmental torques is considered. The CubeSat

is equipped with a Drag Maneuvering Device (DMD) that enables the space-

craft to modulate its experienced aerodynamic and gravity gradient torques.

An adaptive controller is designed to achieve attitude tracking of the space-

craft in the presence of uncertain parameters such as the atmospheric density,

drag and lift coefficients, and the time-varying location of the Center of Mass

(CoM). The proposed controller also accounts for modeling inaccuracy of the

inertia matrix of the spacecraft. A Lyapunov-based analysis is used to prove

that the quaternion-based attitude trajectory tracking error is uniformly ulti-

mately bounded. The designed controller is also examined through numerical

simulations for a spacecraft with time-varying uncertain drag, lift coefficients

and CoM location parameters and the NRLMSISE-00 model for the atmospheric

density.
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1. Introduction

Missions involving small satellites in Low Earth Orbit (LEO) have become

popular with the introduction of the CubeSat standard [1]. The limited volume

available in these satellites has increased the need to develop propellant-less

strategies for orbit and attitude control, usually exploiting the interaction of5

the spacecraft with the low density atmosphere [2–6]. The idea of using the

drag force for relative orbit maneuvers was first introduced in [7]. Since then, a

wide variety of control strategies have been developed using both aerodynamic

lift and drag as the only control means [8–11]. To exploit such forces, dedicated

surfaces are installed on the spacecraft to increase its area-to-mass ratio, often10

locating the center of pressure at distances with respect to the Center of Mass

(CoM) such that significant torques can be applied. This has led to the design

of CubeSats that can alter the aerodynamic torques by actively modulating

the length and angle of drag surfaces. Such designs often involve several ultra-

lightweight surfaces with two or more degrees of freedom [3, 4] so that the inertia15

matrix does not change significantly and its time derivative can be neglected in

the attitude equations of motion.

The University of Florida ADvanced Autonomous MUltiple Spacecraft labo-

ratory (ADAMUS) has designed the Drag Maneuvering Device (DMD), formerly

Drag De-Orbit Device (D3) [12], and has been studying its capabilities for space-20

craft controlled re-entry [13, 14], spacecraft relative maneuvering [15, 16] and

attitude control [17–19] by using its four dedicated surfaces to modulate the

experienced environmental forces and torques on a CubeSat. The design of the

DMD provides a CubeSat with four repeatedly extendable/retractable surfaces

offset 90 degrees from each other, and with 20 degrees inclination with respect25

to the anti-ram face of the CubeSat. The DMD has passed through several pro-

totype iterations, and incorporates only one degree of freedom for each surface,

which makes it easier to build and less susceptible to failure of moving parts.

It is also capable of altering the CubeSat inertia matrix to make use of the

aerodynamic and the gravity gradient torques.30
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Previous work in [19] presented the design of an integral concurrent learning-

based control method to provide simultaneous state tracking and on-line estima-

tion of uncertain parameters. These uncertain parameters included the average

drag coefficient and atmospheric density, and the time-varying CoM location

and inertia matrix were assumed known. However, in real operation, inaccurate35

knowledge of these two parameters could reduce the performance or even desta-

bilize the system. Controllers that actively change the location of the CoM have

been proposed for spacecraft attitude control in [20] using PID, linear quadratic

regulator and partial feedback linearization techniques, and the developed con-

trol laws computed the location of the CoM so that the desired control torques40

can be produced. The results in [20] demonstrate how the CoM location can

influence the overall performance of the system, making it necessary to account

for uncertainties in this parameter. The problem of having uncertainties in the

CoM location has been addressed in [21] for unmanned aerial vehicles using

an adaptive controller for constant CoM. In [22], adaptive control techniques45

have been used to develop a propellant-based spacecraft attitude controller that

considers time-dependent or input-dependent inertia parameters to account for

deployable appendages or mass loss, respectively.

In this paper, the designed controller incorporates uncertainties in the CoM

location and time-varying drag and lift coefficients, as well as partial knowledge50

of the inertia matrix of a DMD-equipped CubeSat. The cost for adding this

adaptation capability is that the on-line parameter estimation feature is lost

compared to [19]. However, the proposed controller provides improved robust-

ness to uncertainties in parameters that are inaccurate and time-varying. The

contribution of this paper is the design of an adaptive controller that exploits55

environmental torques for spacecraft attitude maneuvers in the presence of un-

certainties in the time-varying CoM location, atmospheric density, drag and lift

coefficients with guaranteed bounded state tracking through a Lyapunov-based

stability analysis.

The remainder of this paper is organized as follows. Section 2 describes the60

DMD device, and Section 3 presents the spacecraft attitude dynamics. Section
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4 describes the control objective and the control development. Section 5 shows

the corresponding Lyapunov-based stability analysis. Sections 6 and 7 present

the numerical simulation and conclusion, respectively.

2. Drag Maneuvering Device65

In this paper, the controller design is based on the DMD developed in [12].

It consists of four repeatedly extendable/retractable 3.7 m long and 0.038 m

width surfaces offset 90 deg and inclined 20 deg with respect to the anti-ram

face of the spacecraft, as depicted in Figure 1.

Figure 1: Drag Maneuvering Device schematic.

The surfaces are fabricated from strips of austenitic 316 stainless steel shim70

stock with 0.0762 mm thickness, weighting approximately 95 g. Given the

weight of each boom and their lengths, significant changes in aerodynamic and

gravity gradient torques can be created by independently modulating the length

of each DMD surface. When the surfaces are fully extended, the DMD provides

an increase of the cross-wind surface area up to 0.5 m2.75

3. Attitude Dynamics

3.1. Reference Frames

The Earth-Centered-Inertial (ECI) reference frame is considered the inertial

reference frame. The orbital coordinate system is defined as: origin located
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at the CoM of the spacecraft. The unit vector ô3 points from the center80

of the Earth towards the spacecraft CoM, the unit vector ô2 is aligned with

the orbit angular momentum, and the unit vector ô1 completes a right-hand

Cartesian coordinate system. The body coordinate system is defined with the

origin located at the CoM of the spacecraft, and the unit vectors b̂1, b̂2 and

b̂3 aligned with the longitudinal, lateral, and vertical axes of the spacecraft,85

respectively, as depicted in Figure 2.

Figure 2: Coordinate systems.

3.2. Equation of Motion

The spacecraft attitude dynamics are given by

J̇ω + Jω̇ + ω×Jω = τD + τL + τGG + δ, (1)

where ω ∈ R3 is the angular velocity of the body with respect to the inertial

reference frame, J ∈ R3×3 is the inertia matrix of the spacecraft, τGG ∈ R3

is the gravity gradient torque, and τD, τL ∈ R3 are the aerodynamic torques

due to drag and lift, respectively. The vector δ ∈ R3 denotes disturbances to

the system (e.g., magnetic torques). The skew symmetric matrix a× ∈ R3×3
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for a vector a , [a1 a2 a3]T ∈ R3 is defined as

a× ,


0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (2)

Remark 1. The design of the DMD considers surfaces made of austenitic

stainless steel, which is considered a non-magnetic material [12]. Therefore, the90

DMD surfaces are not expected to generate magnetic hysteresis torques. An

estimate of the maximum remaining magnetic moment of the spacecraft can be

computed following the procedure in [23] under the guidelines in [24] for a class

II spacecraft.

Assumption 1. The disturbance torque δ can be upper bounded as ‖δ‖≤ ζ0,95

where ζ0 ∈ R>0 is a known bounding constant.

3.3. Quaternion Representation of the Spacecraft Orientation

The quaternion q ∈ R4 represents the rotation of the spacecraft body with

respect to an inertial frame, expressed in the body coordinate system as [25]

q ,
[
q0 qv

T
]T
, (3)

where q0 ∈ R and qv = [q1 q2 q3]T ∈ R3. The quaternion q has the property100

qv
Tqv + q0

2 = 1. (4)

The rotational kinematics of the spacecraft is defined as

q̇v ,
1

2

(
q×v + q0I3

)
ω (5)

q̇0 , −
1

2
qv

Tω, (6)

where I3 ∈ R3×3 denotes the identity matrix. To specify a desired time-varying

attitude trajectory, we also define a desired quaternion qd ∈ R4 as

qd ,
[
q0d qvd

T
]T
, (7)
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where q0d ∈ R and qvd ∈ R3. Using (5) and (6), the angular velocity ω can

be expressed in terms of q as105

ω = 2 (q0q̇v − qvq0)− 2q×v q̇v, (8)

and the desired angular velocity of the body ωd with respect to the inertial

frame can be expressed in the desired body coordinate system as

ωd = 2 (q0dq̇vd − qvdq0d)− 2qvd
×q̇vd. (9)

For simplicity, the attitude dynamics will be expressed in the body coordi-

nate system in the subsequent stability analysis. Therefore, it is useful to define

the matrices that represent the actual and desired orientation of the body with110

respect to the inertial frame, which are denoted by R ∈ SO(3) and Rd ∈ SO(3),

respectively, as [25]

R ,
(
q2
0 − qvTqv

)
I3 + 2qvqv

T − 2q0qv
×, (10)

Rd ,
(
q2
0d − qvdTqvd

)
I3 + 2qvdqvd

T − 2q0dqvd
×. (11)

The error quaternion e , [e0 ev
T ]T ∈ R4 that represents the mismatch between

q and qd is defined as

ev , q0dqv − q0qvd + qv
×qvd, (12)

e0 , q0q0d + qv
Tqvd, (13)

which satisfies the property115

ev
Tev + e0

2 = 1, (14)

and obeys the error quaternion kinematics [25]

ėv =
1

2

(
ev
× + e0I3

)
ω̃, (15)

ė0 = −1

2
ev

T ω̃. (16)
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In (15) and (16), ω̃ ∈ R3 denotes the error in the angular velocity of the

spacecraft

ω̃ , ω − R̃ωd, (17)

where R̃ ∈ R3×3 is the rotation matrix used to express ωd in the body coor-

dinate system, and is defined as120

R̃ , RRTd =
(
e0

2 − evTev
)
I3 + 2evev

T − 2e0ev
×. (18)

3.4. Aerodynamic Torques

A spacecraft in LEO experiences drag and lift forces on every surface exposed

to the incoming atmosphere particles. In the case of a DMD-equipped CubeSat,

the surface areas of the DMD are significantly larger than those of the body so

that the latter can be neglected. The drag force FD,j ∈ R3 and the lift force125

FL,j ∈ R3 are assumed to act on the geometric center of each DMD surface and

can be expressed as

FD,j = −ρwbLjCD,j
2

‖V ⊥,j‖2
Vr

‖Vr‖
(19)

and

FL,j = −ρwbLjCL,j
2

‖V ⊥,j‖2
(
Vr

‖Vr‖
× nj ×

Vr

‖Vr‖

)
. (20)

In (19) and (20), the subscript j indicates the jth DMD surface, ρ ∈ R is

the atmospheric density, CD,j , CL,j , wb, Lj ∈ R are drag and lift coefficients,

and the width and length of the corresponding DMD surface, respectively. The

spacecraft-atmosphere relative velocity vector Vr ∈ R3, assuming that the at-

mosphere co-rotates with the Earth, is defined as

Vr , Ṙc − ω⊕ ×Rc, (21)

where ω⊕ ∈ R3 is the angular velocity of the Earth, and Rc, Ṙc ∈ R3 represent

the ECI position and velocity of the spacecraft, respectively. The vector nj ∈ R3
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is a unit vector that represents the direction normal to the jth DMD surface130

and V⊥,j , Vr·nj .

Remark 2. Density models with different levels of accuracy have been de-

veloped throughout the years. The U.S Standard [26] and Harris-Priester [27]

models are altitude-based theoretical models that provide values for the atmo-

spheric density based on the spacecraft altitude at a low computational cost.135

More accurate and complex models, such as the NRLMSISE-00 [28] also incor-

porate data gathered from real missions to provide atmospheric density values

dependent on the date, time, spacecraft position as well as solar and geomag-

netic indices. However, more complex density models require significantly higher

computational effort and forecasts of solar and geomagnetic activity that are af-140

fected by additional uncertainties. Given the multiple sources of uncertainty

and approximations in the density models, the error is still significant even with

the most accurate ones [29].

The subsequent development is based on the analytical models for drag and

lift coefficients presented in [30] that assume flat plates in a free molecular flow145

as

(22)
CD,j ,

2

s
√
π

exp(−s2 sin2(θin))

+
sin(θin)

s2
(1 + 2s2)erf(s sin(θin)) +

√
π

s
sin2(θin)

√
Tk,out/Ta

CL,j ,
cos(θin)

s2
erf(s cos(θin)) +

1

s

√
π cos(θin) sin(θin)

√
Tk,out/Ta, (23)

where erf(·) represents the error function [31], s , ‖Vr‖
√
m/(2kBTa) ∈ R

is an auxiliary variable, m ∈ R is the mass of the spacecraft, kB ∈ R is

the Boltzmann constant, θin ∈ R is the principal rotation angle between Vr

and nj , and Ta ∈ R is the ambient atmosphere temperature. The kinetic

temperature of reflected particles at the surface Tk,out ∈ R is defined as

Tk,out ,
m

3kB
‖V r‖2(1− α) + αTs, (24)
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where Ts ∈ R is the temperature of the surface, and α ∈ R is an accommodation

coefficient that represents the influence of the surface material properties.

The torques produced by aerodynamic drag and lift are given by

τk ,
4∑
j=1

Rj
×Fk,j , k = D,L, (25)

where Rj , rc + rj , rc , [c1 c2 c3]T ∈ R3 is the uncertain vector that goes150

from the spacecraft CoM to the geometric center of the rear face of the CubeSat

(O′), and rj ∈ R3 is the vector that goes from O′ to the center of pressure of

the jth DMD surface. Given the geometry and capabilities of the DMD, the

vector rc also varies with the level of deployment of the drag surfaces.

3.5. Gravity Gradient Torque155

The DMD-equipped CubeSat, considered a rigid body in space, experiences a

gradient of gravitational force along the body with the greatest attraction on the

parts that are closer to the Earth. This gradient produces the so-called Gravity

Gradient Torque (GGT) that depends on the attitude and inertia properties.

The GGT is given by [32]160

τGG ,
3GM⊕
‖Rc‖5

Rc
×JRc, (26)

where M⊕ ∈ R>0 is the mass of the Earth, and G ∈ R>0 is the universal

gravitational constant.

The GGT can be changed by extending/retracting the DMD surfaces which

directly affect the inertia matrix. A simple model to compute the variation of

the inertia matrix by assuming DMD surfaces that can be divided as a thick165

walled cylinder (rolled portion) and a flat plate (deployed portion) [17], is used

to propagate the attitude dynamics for the numerical simulation in Section 6.
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4. Control Design

4.1. Control Objective

The objective is to design an adaptive controller for the spacecraft attitude to170

track a given time-varying reference qd using only the influence of environmental

torques on the spacecraft attitude dynamics as described in (1). Uncertainties

associated with the average atmospheric density ρ and drag coefficient CD have

been addressed in previous work from the authors in [19]. However, assumptions

such as perfect knowledge of the inertia matrix J and the location of the CoM175

rc were made to achieve the control objective along with on-line parameter

estimation. In this work, at the cost of losing the on-line parameter estimation

feature, an augmented vector is proposed to compensate for the uncertainties.

Although analytical models to compute the variation of the inertia matrix

can be developed, modeling approximations are inherent and lead to uncertain180

disturbances. Moreover, modeling deviations in the CoM location will also result

in inaccurately computing levels of deployment for the DMD surfaces to produce

the torques required by a designed control law.

To achieve the proposed control objective, the subsequent control design will

be performed under the following assumptions.185

Assumption 2. The spacecraft has the capability of using the computa-

tionally light Harris-Priester model [27] to calculate the atmospheric density

ρHP ∈ R>0 on-board. The real atmospheric density, whose behavior is more

complex than what is captured by the Harris-Priester model, is assumed to be

approximated by190

ρ , B1 +B2 ρHP , (27)

where B1, B2 ∈ R are unknown calibration constants.

Assumption 3. The spacecraft is capable of approximately computing its

time-varying inertia matrix Jm ∈ R3×3, provided an on-board simplified ana-
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lytical model. The actual inertia matrix J can be expressed as

J = Jm + ∆J, (28)

where ∆J ∈ R3×3 is the mismatch between the actual and modeled inertia195

matrix. The inertia mismatch ∆J , as well as its time derivative ∆J̇ , are

assumed bounded by known constants. Moreover, since the DMD surfaces are

driven by motors with limited velocity, then the rate of change of the inertia

matrix J̇ can also be bounded by a known constant.

Assumption 4. The desired quaternion qd, desired angular velocity ωd and

its time derivative ω̇d are known and bounded signals such that

‖qd‖≤ ζ1, ‖ωd‖≤ ζ2, ‖ω̇d‖≤ ζ3, (29)

where ζ1, ζ2, ζ3 ∈ R>0 are known bounding constants.200

Assumption 5. The spacecraft is equipped with an attitude determination

system that provides the controller with measurements of the angular velocity

ω and quaternion q.

Since the components of e satisfy (14), the attitude control objective can

be established as

R̃→ I3 as t→∞. (30)

Based on (12)-(14), the control objective in (30) can be achieved if

‖ev‖→ 0⇒| e0 |→ 1. (31)

4.2. Control Development205

Let the modified state vector r ∈ R3 be defined as

r , ω̃ + βev, (32)

where β ∈ R3×3 is a symmetric, positive-definite control gain matrix. Taking

the time derivative of r and pre-multiplying by the inertia matrix J yields

J ṙ = τD+τL+
3GM⊕
‖Rc‖5

Rc
×JRc+δ−J̇ω−ω×Jω−J ˙̃

Rωd−JR̃ω̇d+Jβėv. (33)
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Using (15), (17), Assumption 3 and the fact that
˙̃
R = −ω×R̃ yields

J ṙ = f + Ñ +NB, (34)

where f, Ñ, NB ∈ R3 are auxiliary variables defined as

(35)
f , τD + τL +

3GM⊕
‖Rc‖5

Rc
×JmRc − J̇mω

− ω×Jmω + Jmω
×R̃ωd − JmR̃ω̇d + Jmβėv,

(36)
Ñ , −∆J̇ω̃ − ω̃×∆J

(
ω̃ + R̃ωd

)
−
(
R̃ωd

)×
∆Jω̃

+ ∆Jω̃×R̃ωd +
1

2
∆Jβ

(
ev
× + e0I3

)
ω̃,

(37)NB , −∆J̇R̃ωd −
(
R̃ωd

)×
∆JR̃ωd +

3GM⊕
‖Rc‖5

Rc
×∆JRc + δ −∆JR̃ω̇d.

Since ω̃ = r − βev, and considering that ‖Rc‖ can be upper bounded by210

a known constant. Using Assumptions 3 and 4, Ñ and NB can be upper

bounded as

‖Ñ‖ ≤ σ (‖η‖) ‖η‖, (38)

‖NB‖ ≤ ζ4, (39)

where ζ4 ∈ R>0 is a known bounding constant, η ∈ R6 is an augmented state

vector defined as

η ,
[
ev

T rT
]T
, (40)

and σ : R6 → R is a positive, globally invertible and non-decreasing function.215

To include the adaptation capabilities that compensate for the unknown

parameters, the term f that contains only measurable states and the modeled

inertia matrix Jm, can be linearly parameterized with respect to the unknown

parameters. First, consider the contribution of the jth DMD surface to the
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force due to the aerodynamic drag and lift FAT,j ∈ R3 which can be expressed220

using Assumption 2 as

FAT,j , YjΘj , j = 1, 2, 3, 4. (41)

In (41) Yj ∈ R3×4 are measurable regression matrices defined as

Yj ,[
− Ljwb‖V⊥,j‖2

2‖Vr‖
Vr [1 ρHP ] − Ljwb‖V ⊥,j‖2

2

(
Vr

‖Vr‖
× nj ×

Vr

‖Vr‖

)
[1 ρHP ]

]
(42)

and the vectors Θj ∈ R4 are

Θj ,
[
B1CD,j B2CD,j B1CL,j B2CL,j

]T
. (43)

Therefore, the total aerodynamic torque τAT,j ∈ R3 due to the aerodynamic

drag and lift in (25) can be rewritten as

τAT , τD + τL = rc
×

4∑
j=1

(YjΘj) +

4∑
j=1

(
rj
×YjΘj

)
. (44)

In (44), the first term can be expressed as225

rc
×

4∑
j=1

(YjΘj) =


01×16 Yr(3) −Yr(2)

−Yr(3) 01×16 Yr(1)

Yr(2) −Yr(1) 01×16




Θrc1

Θrc2

Θrc3

 , (45)

where Yr ∈ R3×16 is a measurable regression matrix defined as

Yr ,
[
Y1 Y2 Y3 Y4

]
, (46)

and Yr(k) denotes the kth row of Yr. Similarly, the vector of uncertain

parameters Θr ∈ R16 is defined as

Θr ,
[
Θ1

T Θ2
T Θ3

T Θ4
T
]T
. (47)
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The second term in (44) can be expressed as

4∑
j=1

(
rj
×YjΘj

)
=

4∑
j=1



Yj(3)rj,2 − Yj(2)rj,3

Yj(1)rj,3 − Yj(3)rj,1

Yj(2)rj,1 − Yj(1)rj,2

Θj

 , (48)

where rj , [rj,1 rj,2 rj,3]T is the vector defined in (25), and Yj(k) denotes the

kth row of Yj . Substituting (45) and (48) into (44) yields

τAT = YATΘAT , (49)

where YAT ∈ R3×64 is a measurable regression matrix and ΘAT ∈ R64 is a

vector of uncertain parameters, and are defined as230

YAT =
01×16 Yr(3) −Yr(2) Y1(3)r1,2 − Y1(2)r1,3 · · · Y4(3)r4,2 − Y4(2)r4,3

−Yr(3) 01×16 Yr(1) Y1(1)r1,3 − Y1(3)r1,1 · · · Y4(1)r4,3 − Y4(3)r4,1

Yr(2) −Yr(1) 01×16 Y1(2)r1,1 − Y1(1)r1,2 · · · Y4(2)r4,1 − Y4(1)r4,2

 ,
(50)

(51)ΘAT =
[
Θr

T c1 Θr
T c2 Θr

T c3 Θr
T
]
T ,

respectively. Therefore, (35) can be rewritten as

f = YΘ, (52)

where Y ,
[
YAT

3GM⊕

‖Rc‖5
R×c JmRc − J̇mω − ω×Jmω + Jmω

×R̃ωd − JmR̃ω̇d +

Jmβėv

]
∈ R3×65 is the measurable augmented regression matrix, and Θ ,[

ΘAT
T 1
]T
∈ R65 is the augmented vector of uncertain parameters.

Assumption 6. The time-varying vector of uncertain parameters Θ and its235

time derivative, i.e., Θ̇, are bounded by known constants. The bounds for Θ

are given by

Θ ≤ Θ ≤ Θ, (53)
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where Θ, Θ ∈ R65 are constant vectors containing the lower and upper bounds

of Θ, respectively.

Define the estimation error Θ̃ ∈ R65 as240

Θ̃ = Θ− Θ̂, (54)

where Θ̂ ∈ R65 is the estimate of Θ. Using (52) and (54), and adding and

subtracting the term Y Θ̂ to the open-loop error system in (34) yields

J ṙ = Y Θ̃ + Y Θ̂ + Ñ +NB. (55)

The regression matrix Y contains measurable states and is influenced by the

actual inputs (i.e., the DMD surfaces lengths L1, L2, L3, L4), while the update

law for the estimated vector Θ̂ will be subsequently designed. Therefore, the245

measurable product Y Θ̂ can be altered by modulating the length of the DMD

surfaces. This term is designated as the auxiliary control input ū ∈ R3

Y Θ̂ , ū. (56)

To facilitate the subsequent stability analysis, let the desired auxiliary control

signal ūd ∈ R3 be designed as

ūd , −K1r − β1ev, (57)

where β1 ∈ R>0 is a positive constant gain, and K1 ∈ R3×3 is a constant,

positive-definite control gain matrix. Adding and subtracting ūd and substi-

tuting (56) and (57) into (55) yields the closed-loop error system

J ṙ = Y Θ̃ + Ñ +NB + χ−K1r − β1ev, (58)

where χ , ū− ūd ∈ R3 represents the mismatch between the desired and the

actual auxiliary control inputs. Based on (58), the gradient-based adaptation

law is designed as

˙̂
Θ , proj(ΓY Tr), (59)
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where Γ ∈ R65×65 is a constant, positive-definite adaptation gain matrix, and

proj(·) denotes the continuous projection algorithm presented in [33]. Based on

the value of (·) and the known bounds of Θ̂, the design in
˙̂
Θ ensures Θ̂ remains250

within the known bounded region without altering the stability of the system

nor introducing undesired discontinuities.

5. Stability Analysis

To facilitate the stability analysis, some definitions are introduced. Let

λ1, λ2, λ3, λ4 ∈ R>0 be defined as λ1 , λmin{K1}− ζ5 − 1, λ2 , β1λmin{β},

λ3 , min (λ1, λ2), and λ4 , λ3 − σ2(‖η‖)
2 , respectively, where β is the control

gain defined in (32), K1, β1 are the control gains used in (57), σ (‖η‖) is

the function defined in (38), ζ5 ∈ R>0 is a known bounding constant, and

λmin{·} ∈ R is the minimum eigenvalue of {·}. Let the set D be defined as

D ,
{
η
∣∣∣ ‖η‖< σ−1

(√
2λ3

)}
, and let S ⊂ D be defined as

S ,
{
η ∈ D

∣∣∣ ‖η‖< Λ
}
, (60)

where Λ ,
√

λ

λ̄

(
σ−1

(√
2λ3

))2 − ζ̄−ζ
λ̄

, and λ, λ̄, ζ, ζ̄ ∈ R>0 are known

bounding constants.255

Theorem. Consider the spacecraft attitude dynamics governed by the non-

linear system in (1) with Assumptions 1-5. The auxiliary controller in (57) and

the adaptive update law in (59) ensure uniformly ultimately bounded attitude

tracking in the sense that

‖ev‖≤ ε1exp {−ε2t}+ ε3, (61)

where ε1 ,
√

λ̄‖η(0)‖2+ζ
λ ∈ R>0, ε2 ,

λ4

2λ̄
∈ R>0, ε3 ,

√
λ̄
λ4λ

ζ8 +
ζ−ζ
λ ∈

R>0, ζ8 , ζ6+ (ζ4+ζ7)2

2 ∈ R>0, and ζ6, ζ7 ∈ R>0 are known bounding constants.

Provided that η(0) ∈ S is satisfied, and that the control gains are selected

sufficiently large such that λ1 > 0, and Λ > ε3.

Proof. Let V ∈ R≥0 be a candidate Lyapunov function defined as260

V (t) ,
1

2
rTJr + β1ev

T ev + β1(1− e0)2 +
1

2
Θ̃
T

Γ−1Θ̃. (62)
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The Lypaunov function can be upper and lower bounded as

λ‖η‖2+ζ ≤ V (t) ≤ λ̄‖η‖2+ζ. (63)

Substituting (15), (16), (32), (54) and (58) into the time derivative of (62), and

using the fact that ev
T ev
×ω̃ = 0, yields

V̇ (t) = rT
(
Y Θ̃ + Ñ +NB + χ−K1r

)
+

1

2
rT J̇r

− β1ev
Tβev + Θ̃

T
Γ−1Θ̇− Θ̃

T
Γ−1 ˙̂

Θ.

(64)

Substituting the adaptive update law in (59) into (64), yields

V̇ (t) = rT Ñ +rTNB +rTχ−rTK1r−β1ev
Tβev +

1

2
rT J̇r+ Θ̃

T
Γ−1Θ̇. (65)

In (64), the last two terms can be upper bounded using Assumptions 3 and 6

as

1

2
rT J̇r ≤ ζ5‖r‖2, (66)

Θ̃
T

Γ−1Θ̇ ≤ ζ6. (67)

Using (38), (39), (66) and (67), (65) can be upper bounded as

(68)V̇ (t) ≤ − (λmin{K1} − ζ5) ‖r‖2

− β1λmin{β}‖ev‖2 + σ(‖η‖)‖η‖‖r‖+ (ζ4 + ‖χ‖) ‖r‖+ζ6.

Assumption 7. A numerical optimization algorithm can be used to find a265

suitable set of DMD surface lengths (i.e., L1, L2, L3 and L4) that minimizes

‖χ‖, and the resulting χ can be upper bounded by a constant for the entire

maneuver such that ‖χ‖≤ ζ7.

Using Young’s inequality on the term σ(‖η‖)‖η‖‖r‖ yields σ(‖η‖)‖η‖‖r‖≤
σ2(‖η‖)‖η‖2

2 + 1
2‖r‖

2. Similarly, the inequality (ζ4 + ‖χ‖) ‖r‖≤ 1
2‖r‖

2+ (ζ4+ζ7)2

2

can be obtained using Assumption 7. Therefore, (68) can be rewritten as

V̇ (t) ≤ −λ1‖r‖2−λ2‖ev‖2+
σ2(‖η‖)‖η‖2

2
+ ζ8. (69)
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The expression in (69) can be further upper bounded as

V̇ (t) ≤ −
(
λ3 −

σ2(‖η‖)
2

)
‖η‖2+ζ8. (70)

Provided η ∈ D, then (70) can be rewritten as

V̇ (t) ≤ −λ4‖η‖2+ζ8 ∀η ∈ D. (71)

Using the bounds in (63), (71) can be rewritten as270

V̇ (t) ≤ −λ4

λ
V (t) + ε0, (72)

where ε0 , ζ8 + λ4ζ

λ
. By invoking the Comparison Lemma from [34], the

solution to (72) can be obtained as

V (t) ≤ exp

{
−λ4

λ
t

}
V (0) +

λ

λ4
ε0

(
1− exp

{
−λ4

λ
t

})
. (73)

Using (63) and (73) yields

‖η‖2≤
(
λ‖η(0)‖2+ζ

λ

)
exp

{
−λ4

λ
t

}
+

(
λ

λ4λ
ζ8 +

ζ − ζ
λ

)
. (74)

Using (40) and (74) yields the uniformly ultimately bounded result in (61)

provided η(0) ∈ S, where uniformity in initial time can be concluded from the

independence of λ3 and the ultimate bound from ε3 at time t = 0. From (62),

(63) and (73), then r ∈ L∞. Then, from (17) and (32), ω ∈ L∞. Similarly,

from (15) and (16), ėv, ė0 ∈ L∞. Since r, ω ∈ L∞, and ev, e0, ωd ∈ L∞
by definition, then ūd ∈ L∞ by (57). Since Θ̂ ∈ L∞ by (59), ūd ∈ L∞, and

χ ∈ L∞ by Assumption 7, therefore Y ∈ L∞ using (56). �

6. Simulation Results

The simulations presented in this section are performed using the 4th order

Runge-Kutta fixed-step algorithm to propagate the orbital and attitude dy-

namics. The first simulation, in Subsection 6.1, illustrates the performance of

the controller when required to achieve a fixed orientation relative to the orbital
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frame (regulation maneuver). The second simulation, in Subsection 6.2, presents

the result obtained using the controller to track a time-varying reference rela-

tive to the orbital frame (tracking maneuver). Effects of aerodynamic drag and

lift, gravity gradient torque and J2 perturbation are included in the spacecraft

dynamics. The NRLMSISE-00 atmospheric model is used as the true (unknown

for the controller) atmospheric density. The control law in (57) is computed ev-

ery 30 seconds to allow finding a suitable set of DMD surfaces lengths through

the formulation of a constrained function minimization problem that minimizes

‖χ‖, and includes the physical length constraints of the DMD surfaces. The

MATLAB fmincon command is used to solve the minimization problem

min
L1,L2,L3,L4

‖Y Θ̂− ūd‖ subject to
{

0 ≤ Lj ≤ 3.7, j = 1, 2, 3, 4. (75)

275

The spacecraft is simulated in a circular orbit with inclination of 51.94

degrees and 400 km altitude, similar to that of the International Space Station

(ISS). The initial orbital elements and spacecraft parameters are presented in

Tables 1 and 2, respectively. Additionally, the simulations also incorporate

modeling inaccuracies in the CoM location and inertia matrix. For visualization280

purposes, in the subsequent simulation results, the orientation of the body with

respect to the orbital frame is expressed using a 3-2-1 Euler angle sequence,

where φ, θ and ψ denote the roll, pitch and yaw angles, respectively (see [17]

for details). The roll, pitch and yaw angles correspond to rotations about b̂1, b̂2

and b̂3, respectively. Simulation parameters, initial conditions and uncertainties285

are the same for both simulation examples. The initial conditions (φ0, θ0, ψ0)

are presented in Table 3.
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Parameter Value

Semi-Major Axis [m] 6778× 103

Eccentricity 0

Inclination [deg] 51.94

RAAN [deg] 206.26

Arg. of Perigee [deg] 101.07

True Anomaly [deg] 108.08

Table 1: Initial orbital parameters for simulation of regulation and tracking maneuvers.

Parameter Value

CubeSat Body Mass [kg] 3

DMD Surface Mass [kg] 9× 10−2

Max. DMD Surface Length [m] 3.7

DMD Surface Width [m] 3.8× 10−2

Table 2: Spacecraft parameters for simulation of regulation and tracking maneuvers.

Parameter Value

φ0 [deg] 45

θ0 [deg] −60

ψ0 [deg] 50

φ̇0 [deg/s] 5× 10−2

θ̇0 [deg/s] −7.5× 10−2

ψ̇0 [deg/s] 6× 10−2

Table 3: Initial Euler angles and angle rates for simulation of regulation and tracking

maneuvers.
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6.1. Regulation Maneuver

To propagate the spacecraft dynamics, a model to compute the inertia ma-

trix Jm as function of the DMD-surfaces lengths is used. Specifically, Jm is290

computed by representing a 2U CubeSat structure as a rectangular box, and the

rolled and deployed portions of a DMD-surface are modeled as a thick walled

cylinder and a flat plate, respectively. The inaccuracy of Jm is introduced by

incorporating deviations in the mass for each part of the spacecraft and the

assumed locations of their individual CoMs are shown in Table 4.295

Parameter Real (for J) Approx. (for Jm)

CoM CubeSat Body [cm] [0 0 0]T [1.8 2 − 3]T

CoM Flat Plate (×10−2) [m] [0 0 0]T [4.5L2
j 0 0]T

Deployer mass [g] 89.88 75

Table 4: Uncertainties included in simulation to compute Jm. CoMs expressed in

coordinate systems centered at the geometric center of the body of interest, where

j = 1, 2, 3, 4.

The objective for this maneuver is to achieve a fixed orientation of the space-

craft with respect to the orbital frame. The controller parameters are shown in

Table 5, and the desired Euler angles are presented in Table 6. Figures 3 and

4 show the resulting quaternion error components and the corresponding trans-

formation to Euler angles for a 10 hour simulation, respectively. The results300

show that the regulation objective was achieved with ultimate bounds for roll,

pitch and yaw within ±3, ±2 and ±2.2 degrees, respectively.

As concluded in the stability analysis, the resulting ultimate bound can be

attributed to the size of the disturbance torques in δ, the residual error χ, the

unmodeled effects of the DMD on the inertia matrix, and the rate of change305

of the uncertain parameters (i.e., Θ̇). Therefore, efforts on improving the

knowledge of the inertia matrix, using a good numerical algorithm to solve for

the lengths and avoiding high deployment rates, would have direct influence on

reducing the ultimate bounds.
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The levels of deployment for the DMD surfaces are shown in Figure 5. Ac-310

tuator saturation was applied to account for the physical limits of the DMD

surfaces. Although this saturation was not explicitly modeled in the controller

design, the controller has shown to be robust enough to regulate the orienta-

tion despite the physical actuator limits. In an effort to reduce the influence

of rapid variations of the control inputs, a low-pass filter with cutoff frequency315

ωc , 0.017 Hz has been applied to the lengths calculated by the fmincon al-

gorithm and the maximum deployment rate among all DMD surfaces for this

maneuver was 2.9 meters per minute. The norm of the resulting mismatch

between ū and ūd (i.e., ‖χ‖) is shown in Figure 6. Due to the amplitude

limitations of the environmental torques, the actuators reached their saturation320

limits multiple times during approximately the first five hours of the maneuver.

However, after the period of saturation, ‖χ‖ remained below 1× 10−6 Nm.

The estimated parameters in Θ̂ are shown in Figures 7 and 8 for the pa-

rameters associated with the aerodynamic drag and in Figures 9 and 10 for

the parameters associated with the aerodynamic lift. The estimations are di-325

vided into four plots to better observe their variation over time because of their

different orders of magnitude. From the stability analysis, it cannot be con-

cluded that the estimation error Θ̃ converges to zero, meaning that there is

no on-line parameter estimation. However, the results show that all parame-

ters are dynamically adjusted to compensate for the environmental and physical330

uncertainties and remain bounded.
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Parameter Value

K1 (×10−3) diag(3, 3, 3)

β
(
×10−3

)
diag(1.5, 5, 5)

β1

(
×10−6

)
3.2

Γ diag
(
Γ2,Γ2,Γ2,Γ2, 6Γ2, 6Γ2,Γ1,Γ1, 10−20

)
Γ1

(
×10−19

)
diag

(
1, 1011, 1, 1011, 1, 1011, 1, 1011

)
Γ2

(
×10−22

)
diag

(
2, 211, 2, 211, 2, 211, 2, 211

)
Table 5: Controller parameters used for simulation of regulation and tracking maneu-

vers.

φd [deg] θd [deg] ψd [deg]

45 0 10

Table 6: Desired orientation of the spacecraft with respect to the orbital frame for the

regulation maneuver.

Figure 3: Resulting error quaternion for the regulation maneuver using the designed

controller.
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Figure 4: Resulting Euler angles for the regulation maneuver using the designed con-

troller.

Figure 5: Required level of deployment for the DMD surfaces using the designed con-

troller for the regulation maneuver.

25



Figure 6: Resulting mismatch ‖χ‖ obtained using MATLAB fmincon to solve for the

DMD surfaces lengths for the regulation maneuver.

Figure 7: Resulting parameter estimates B̂1ĈD,j in Θ̂ with j = 1, 2, 3, 4 associated

with the aerodynamic drag for the regulation maneuver using the designed controller.
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Figure 8: Resulting parameter estimates
[
ĉ1B̂1ĈD,j , ĉ1B̂2ĈD,j , ĉ2B̂1ĈD,j , ĉ2B̂2ĈD,j ,

ĉ3B̂1ĈD,j , ĉ3B̂2ĈD,j

]T
in Θ̂ with j = 1, 2, 3, 4 associated with the aerodynamic drag

for the regulation maneuver using the designed controller.

Figure 9: Resulting parameter estimates B̂1ĈL,j in Θ̂ with j = 1, 2, 3, 4 associated

with the aerodynamic lift for the regulation maneuver using the designed controller.
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Figure 10: Resulting parameter estimates
[
ĉ1B̂1ĈL,j , ĉ1B̂2ĈL,j , ĉ2B̂1ĈL,j , ĉ2B̂2ĈL,j ,

ĉ3B̂1ĈL,j , ĉ3B̂2ĈL,j

]T
in Θ̂ with j = 1, 2, 3, 4 associated with the aerodynamic lift

for the regulation maneuver using the designed controller.

For the specific spacecraft and orbit considered in the regulation example,

a feasible range of operation including saturation of the control inputs is deter-

mined by performing a set of 1000 five-hour simulations of regulation maneuvers.

The initial conditions and the desired Euler angles are randomly initialized as335

shown in Table 7. The set of possible desired Euler angles has been selected so

that the operational range for a more demanding mission as compared to the

previous example is considered (e.g., pointing a camera on the ram/anti-ram

face of the spacecraft to a given objective).

To point the b̂1 body axis towards any direction inside a cone of limited340

size with respect to the along-track direction ô1, it is sufficient to vary the

desired roll and yaw angles. The size of the cone is driven by the bounds of

the yaw angle and all directions inside the cone are explored by varying the roll

angle. For all simulations, the spacecraft is considered stabilized if ‖ev‖≤ 0.4

(user-defined) on average during the last 20 minutes of the maneuver, which345

was found representative for successful maneuvers considering the ultimately

bounded result from the stability analysis. Figure 11 presents the percentage of
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stabilized maneuvers with different limits for the norm of the yaw angle ‖ψ‖

(i.e., cone sizes). Figure 12 illustrates the difference in size between cones result-

ing from yaw bounds of ±8 and ±25 degrees, with percentages of success of 80%350

and 70%, respectively. The remaining percentage of failure can be attributed

to several factors including the limitations due to the DMD geometry, initial

conditions, and variations of atmospheric density, among others.

Parameter Range

φ0, θ0, ψ0 [deg] [−10, 10]

φ̇0, θ̇0, ψ̇0 [deg/s] [−0.02, 0.02]

φd [deg] [−180, 180]

θd [deg] 0

ψd [deg] [−25, 25]

Table 7: Parameter ranges for the set of 1000 five-hour simulations.

Figure 11: Resulting percentage of successful regulation maneuvers vs. size of the cone.
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Figure 12: Resulting feasible range of operation, 8 degrees (80%), 25 degrees (70%).

6.2. Tracking Maneuver

The simulation presented in this subsection illustrates a scenario where the355

CubeSat is required to change its orientation with respect to the orbital frame

over time. This task could be required for missions where the spacecraft needs

to adjust its orientation for pointing a sensor (e.g., a camera) towards different

areas during the mission. The scenario considers a spacecraft that is required

to track a desired trajectory of the roll angle while keeping the pitch and yaw360

angles fixed. The initial conditions and control parameters are the same used

for the regulation maneuver, and the desired Euler angles are presented in Table

8.

Figures 13 and 14 show the resulting quaternion error components and the

corresponding transformation to Euler angles for a 10 hour simulation. These365

results show that the CubeSat orientation reaches the ultimate bound in approx-

imately 5 hours. The ultimate bounds for roll, pitch and yaw are ±3, ± 1.5

and ±3 degrees, respectively.

The resulting lengths of the DMD are shown in Figure 15, where satura-

tion to account for the physical constraints was applied. The DMD surfaces370

reached their saturation levels multiple times during the first two hours of the
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simulation, and the controller has shown to be robust during that portion of

the maneuver. The maximum deployment rate among all DMD surfaces for the

tracking maneuver was 2.6 meters per minute. Figure 16 shows the norm of

the mismatch between ū and ūd (i.e., ‖χ‖), after the period of saturation, it375

remained below 8.9× 10−7 Nm.

The estimated parameters in Θ̂ are shown in Figures 17 and 18 for pa-

rameters associated with the aerodynamic drag and in Figures 19 and 20 for

those associated with the aerodynamic lift. All the estimations remain bounded

and are dynamically adjusted to compensate for the uncertainties but on-line380

estimation cannot be guaranteed.

φd [deg] θd [deg] ψd [deg]

35 + 15 sin(4.36× 10−4t) 0 0

Table 8: Desired orientation of the spacecraft with respect to the orbital frame for the

tracking maneuver.

Figure 13: Resulting error quaternion for the tracking maneuver using the designed

controller.
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Figure 14: Resulting Euler angles for the tracking maneuver using the designed con-

troller.

Figure 15: Required level of deployment for the DMD surfaces using the designed

controller for the tracking maneuver.
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Figure 16: Resulting mismatch ‖χ‖ obtained using MATLAB fmincon to solve for the

DMD surfaces lengths for the tracking maneuver.

Figure 17: Resulting parameter estimates B̂1ĈD,j in Θ̂ with j = 1, 2, 3, 4 associated

with the aerodynamic drag for the tracking maneuver using the designed controller.
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Figure 18: Resulting parameter estimates
[
ĉ1B̂1ĈD,j , ĉ1B̂2ĈD,j , ĉ2B̂1ĈD,j ,

ĉ2B̂2ĈD,j , ĉ3B̂1ĈD,j , ĉ3B̂2ĈD,j

]T
in Θ̂ with j = 1, 2, 3, 4 associated with the aero-

dynamic drag for the tracking maneuver using the designed controller.

Figure 19: Resulting parameter estimates B̂1ĈL,j in Θ̂ with j = 1, 2, 3, 4 associated

with the aerodynamic lift for the tracking maneuver using the designed controller.
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Figure 20: Resulting parameter estimates
[
ĉ1B̂1ĈL,j , ĉ1B̂2ĈL,j , ĉ2B̂1ĈL,j , ĉ2B̂2ĈL,j ,

ĉ3B̂1ĈL,j , ĉ3B̂2ĈL,j

]T
in Θ̂ with j = 1, 2, 3, 4 associated with the aerodynamic lift

for the tracking maneuver using the designed controller.

To illustrate the approach taken to evaluate the effect that the applied

torques may have on the long DMD surfaces, a comparison between the fre-

quency content of the applied torque and the first natural frequencies of a DMD

surface was performed for the tracking maneuver. A fully deployed DMD sur-385

face was modeled as a cantilevered beam and the first natural frequencies were

computed using SolidWorks. Figure 21 illustrates the first five mode shapes and

their corresponding frequencies, and Figure 22 shows the Fast Fourier Trans-

form (FFT) of each component of the applied torque. From these figures, the

range of frequencies of the applied torques is reasonably below the first natural390

frequency of the DMD surface (i.e., 0.1396 Hz).

35



Figure 21: First natural frequencies of a fully deployed DMD surface.

Figure 22: FFT of the torque Y Θ̂ applied during the tracking maneuver.

7. Conclusion

This paper presented the design and validation through numerical simula-

tion of an adaptive controller for environmental torques-based attitude control
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that compensates for uncertainties in the atmospheric density, drag and lift co-395

efficients, and center of mass location. Moreover, the controller also considers

perturbations associated with the non-modeled behavior of the inertia matrix.

The obtained result ensures the alignment of the body and orbital frames within

ultimate bounds. Simulation results including aerodynamic and gravity gradi-

ent torques, actuator saturation, as well as the NRLMSISE-00 model for atmo-400

spheric density and J2 perturbation, were performed to validate regulation and

tracking of the angles to their desired values relative to the orbital frame within

bounds of ±3 deg. Therefore, the controller shows potential for applications

where the location of the center of mass, atmospheric density, drag coefficients

are uncertain and the inertia matrix cannot be accurately computed in real time.405

Future work on this problem will consider strategies to address implementation

challenges such as failures to deploy a DMD surface.

Acknowledgments

This research has been supported by the Fulbright Colombia Commission

and the AFOSR award number FA9550-19-1-0169. Any opinions, findings and410

conclusions or recommendations expressed in this material are those of the au-

thors and do not necessarily reflect the views of the sponsoring agency.

References

[1] T. C. Program, Cubesat design specification rev.13 (2015).

[2] M. I. Martinelli, R. S. Sanchez-Peña, Passive 3 axis attitude control of415

msu-1 pico-satellite, Acta Astronautica 56 (2005) 507–517. doi:10.1016/

j.actaastro.2004.10.007.

[3] M. Pastorelli, R. Bevilacqua, S. Partorelli, Differential-drag-based roto-

translational control for propellant-less spacecraft, Acta Astronautica 114

(2015) 6–21. doi:j.actaastro.2015.04.014.420

37



[4] R. Sun, J. Wang, D. Zhang, Q. Jia, X. Shao, Roto-translational spacecraft

formation control using aerodynamic forces, Journal of Guidance, Control

and Dynamics 40 (10) (2017) 2556–2568. doi:10.2514/1.G003130.

[5] R. Sutherland, I. Kolmanovsky, A. R. Girard, Attitude control of a 2u

cubesat by magnetic and air drag torques, IEEE Transactions on Control425

Systems Technology 27 (3) (2019) 1047–1059. doi:10.1109/TCST.2018.

2791979.

[6] A. Harris, C. D. Petersen, H. Schaub, Linear coupled attitude-orbit con-

trol through aerodynamic forces, AIAA Journal of Guidance, Control and

Dynamics 43 (1) (2020) 122–131. doi:10.2514/1.G004521.430

[7] C. L. Leonard, M. Hollister, E. V. Bergman, Orbital formationkeeping with

differential drag, Journal of Guidance, Control and Dynamics 12 (1) (1989)

108–113. doi:10.2514/3.20374.

[8] R. Bevilacqua, M. Romano, Rendezvous maneuvers of multiple spacecraft

by differential drag under j2 perturbation, Journal of Guidance, Control435

and Dynamics 31 (6) (2008) 1595–1607. doi:10.2514/1.36362.

[9] M. Horsley, S. Nikolaev, A. Pertica, Rendezvous maneuvers of small space-

craft using differential lift and drag, Journal of Guidance, Control and

Dynamics 36 (2) (2011) 445–453. doi:10.2514/1.57327.

[10] R. Perez, D. an Bevilacqua, Differential drag spacecraft rendezvous using440

an adaptive lyapunov control strategy, Acta Astronautica 83 (2013) 196–

207. doi:10.1016/j.actaastro.2012.09.005.

[11] D. Ivanov, M. Kushniruk, M. Ovchinnikov, Study of satellite formation

flying control usign differential lift and drag, Acta Astronautica 152 (2018)

88–100. doi:10.1016/j.actaastro.2018.07.047.445

[12] D. Guglielmo, S. Omar, R. Bevilacqua, L. Fineberg, J. Treptow, B. Poffen-

berger, Y. Johnson, Drag de-orbit device: A new standard reentry actua-

38



tor for cubesats, Journal of Spacecraft and Rockets 56 (1) (2018) 129–145.

doi:10.2514/1.A34218.

[13] S. Omar, D. Guglielmo, R. Bevilacqua, Drag de-orbit device (d3) mission450

for validation of controlled spacecraft re-entry using aerodynamic drag, in:

4th IAA Dynamics and Control of Space Systems Conference, Rome, Italy.,

2017.

[14] S. Omar, R. Bevilacqua, Hardware and GNC solutions for controlled space-

craft re-entry using aerodynamic drag, Acta Astronautica 159 (2019) 49–64.455

doi:j.actaastro.2019.03.051.

[15] C. Riano-Rios, R. Bevilacqua, W. E. Dixon, Adaptive control for differ-

ential drag-based rendezvous maneuvers with an unknown target, Acta

Astronautica, In Press. doi:j.actaastro.2020.03.011.

[16] C. Riano-Rios, R. Bevilacqua, W. E. Dixon, Differential drag-based mul-460

tiple spacecraft maneuvering and on-line parameter estimation using in-

tegral concurrent learning, Acta Astronautica 174 (2020) 189–203. doi:

j.actaastro.2020.04.059.

[17] C. Riano-Rios, S. Omar, R. Bevilacqua, W. E. Dixon, Spacecraft attitude

regulation in low earth orbit using natural torques, in: 2019 IEEE 4th465

Colombian Conference on Automatic Control (CCAC), Medellin, Colom-

bia., 2019.

[18] S. Omar, C. Riano-Rios, R. Bevilacqua, Semi-passive three axis attitude

stabilization for earth observation satellites using the drag maneuvering de-

vice, in: 12th Symposium on Small Satellite for Earth Observation. Berlin,470

Germany, 2019.

[19] R. Sun, C. Riano-Rios, R. Bevilacqua, N. G. Fitz-Coy, W. E. Dixon, Cube-

sat adaptive attitude control with uncertain drag coefficient and atmo-

spheric density, AIAA Journal of Guidance, Control and Dynamics, to

appear.475

39



[20] J. Virgili-Llop, H. C. Polat, M. Romano, Attitude stabilization of spacecraft

in very low earth orbit by center-of-mass shifting, Frontiers in Robotics and

AI 6 (2019) 1–9. doi:https://doi.org/10.3389/frobt.2019.00007.

[21] I. Palunko, R. Fierro, Adaptive control of a quadrotor with dynamic

changes in the center of gravity, in: Proceedings of the 18th IFAC World480

Congress, Milano, Italy., 2011.

[22] D. Thakur, S. Srikant, M. R. Akella, Adaptive attitude-tracking control

of spacecraft with uncertain time-varying inertia parameters, Journal of

Guidance, Control, and Dynamics 38 (1) (2015) 41–52. doi:10.2514/1.

G000457.485

[23] J. R. Wertz, D. F. Everett, J. Puschell, Space mission engineering: the new

SMAD, 3rd Edition, Microcosm Press, 2011.

[24] E. P. Blackburn, D. DeBra, D. Dobrotin, J. Scull, R. E. Fischell, D. Fosth,

J. Kelly, A. J. Fleig, H. Perkel, R. E. Roberson, J. Rodden, B. Tinling,

S. O’Neil, F. J. Carroll, R. F. Bohling, NASA space vehicle design criteria490

monograph (guidance and control), NASA SP-8018.

[25] P. Hughes, Spacecraft Attitude Dynamics, Dover Books on Aeronautical

Engineering, Dover Publications, 2012.

[26] NOAA, U.S. standard atmosphere (1976).

[27] I. Harris, W. Priester, Time-dependent structure of the upper atmosphere,495

Journal of the Atmospheric Sciences 19 (4) (1962) 286–301. doi:10.1175/

1520-0469(1962)019<0286:TDSOTU>2.0.CO;2.

[28] J. M. Picone, A. E. Hedin, D. P. Drob, A. C. Aikin, Nrlmsise-00 em-

pirical model of the atmosphere: Statistical comparisons and cientific

issues, Journal of Geophysical Research 107 (A12) (2002) 15–1–15–16.500

doi:10.1029/2002JA009430.

40



[29] O. Montenbruck, E. Gill, Satellite Orbits: Models, Methods and Applica-

tions, Springer, Berlin, 2000.

[30] M. Pilinski, Dynamic gas-surface interaction modeling for satellite aerody-

namic computations, Ph.D. thesis, University of Colorado Boulder (2011).505

[31] C. W. Hall, Laws and Models: Science, Engineering and Technology, 1st

Edition, CRC PRess, 2018.

[32] H. Schaub, J. L. Junkins, Analytical Mechanics of Space Systems, AIAA

Education Series, Reston, VA, 2014. doi:10.2514/4.105210.

[33] Z. Cai, M. S. de Queiroz, D. M. Dawson, A sufficiently smooth projection510

operator, IEEE Transactions on Automatic Control 51 (1) (2006) 135–139.

doi:10.1109/TAC.2005.861704.

[34] H. K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall, NJ, 2002.

41



Aerodynamic and Gravity Gradient based Attitude
Control for CubeSats in the presence of Environmental

and Spacecraft Uncertainties

Camilo Riano-Riosa,∗, Runhan Suna, Riccardo Bevilacquaa, Warren E. Dixona

aUniversity of Florida, 939 Sweetwater Dr., Gainesville, FL

Abstract

In this paper, the problem of controlling the attitude of a CubeSat in low

Earth orbit using only the environmental torques is considered. The CubeSat

is equipped with a Drag Maneuvering Device (DMD) that enables the space-

craft to modulate its experienced aerodynamic and gravity gradient torques.

An adaptive controller is designed to achieve attitude tracking of the space-

craft in the presence of uncertain parameters such as the atmospheric density,

drag and lift coefficients, and the time-varying location of the Center of Mass

(CoM). The proposed controller also accounts for modeling inaccuracy of the

inertia matrix of the spacecraft. A Lyapunov-based analysis is used to prove

that the quaternion-based attitude trajectory tracking error is uniformly ulti-

mately bounded. The designed controller is also examined through numerical

simulations for a spacecraft with time-varying uncertain drag, lift coefficients

and CoM location parameters and the NRLMSISE-00 model for the atmospheric

density.

Keywords: Aerodynamic Torque, Gravity Gradient Torque, Atmospheric

Density, Drag, Lift, Center of Mass, Adaptive.

∗Corresponding author
Email address: crianorios@ufl.edu (Camilo Riano-Rios)

Preprint submitted to Acta Astronautica December 12, 2020



1. Introduction

Missions involving small satellites in Low Earth Orbit (LEO) have become

popular with the introduction of the CubeSat standard [1]. The limited volume

available in these satellites has increased the need to develop propellant-less

strategies for orbit and attitude control, usually exploiting the interaction of5

the spacecraft with the low density atmosphere [2–6]. The idea of using the

drag force for relative orbit maneuvers was first introduced in [7]. Since then, a

wide variety of control strategies have been developed using both aerodynamic

lift and drag as the only control means [8–11]. To exploit such forces, dedicated

surfaces are installed on the spacecraft to increase its area-to-mass ratio, often10

locating the center of pressure at distances with respect to the Center of Mass

(CoM) such that significant torques can be applied. This has led to the design

of CubeSats that can alter the aerodynamic torques by actively modulating

the length and angle of drag surfaces. Such designs often involve several ultra-

lightweight surfaces with two or more degrees of freedom [3, 4] so that the inertia15

matrix does not change significantly and its time derivative can be neglected in

the attitude equations of motion.

The University of Florida ADvanced Autonomous MUltiple Spacecraft labo-

ratory (ADAMUS) has designed the Drag Maneuvering Device (DMD), formerly

Drag De-Orbit Device (D3) [12], and has been studying its capabilities for space-20

craft controlled re-entry [13, 14], spacecraft relative maneuvering [15, 16] and

attitude control [17–19] by using its four dedicated surfaces to modulate the

experienced environmental forces and torques on a CubeSat. The design of the

DMD provides a CubeSat with four repeatedly extendable/retractable surfaces

offset 90 degrees from each other, and with 20 degrees inclination with respect25

to the anti-ram face of the CubeSat. The DMD has passed through several pro-

totype iterations, and incorporates only one degree of freedom for each surface,

which makes it easier to build and less susceptible to failure of moving parts.

It is also capable of altering the CubeSat inertia matrix to make use of the

aerodynamic and the gravity gradient torques.30
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Previous work in [19] presented the design of an integral concurrent learning-

based control method to provide simultaneous state tracking and on-line estima-

tion of uncertain parameters. These uncertain parameters included the average

drag coefficient and atmospheric density, and the time-varying CoM location

and inertia matrix were assumed known. However, in real operation, inaccurate35

knowledge of these two parameters could reduce the performance or even desta-

bilize the system. Controllers that actively change the location of the CoM have

been proposed for spacecraft attitude control in [20] using PID, linear quadratic

regulator and partial feedback linearization techniques, and the developed con-

trol laws computed the location of the CoM so that the desired control torques40

can be produced. The results in [20] demonstrate how the CoM location can

influence the overall performance of the system, making it necessary to account

for uncertainties in this parameter. The problem of having uncertainties in the

CoM location has been addressed in [21] for unmanned aerial vehicles using

an adaptive controller for constant CoM. In [22], adaptive control techniques45

have been used to develop a propellant-based spacecraft attitude controller that

considers time-dependent or input-dependent inertia parameters to account for

deployable appendages or mass loss, respectively.

In this paper, the designed controller incorporates uncertainties in the CoM

location and time-varying drag and lift coefficients, as well as partial knowledge50

of the inertia matrix of a DMD-equipped CubeSat. The cost for adding this

adaptation capability is that the on-line parameter estimation feature is lost

compared to [19]. However, the proposed controller provides improved robust-

ness to uncertainties in parameters that are inaccurate and time-varying. The

contribution of this paper is the design of an adaptive controller that exploits55

environmental torques for spacecraft attitude maneuvers in the presence of un-

certainties in the time-varying CoM location, atmospheric density, drag and lift

coefficients with guaranteed bounded state tracking through a Lyapunov-based

stability analysis.

The remainder of this paper is organized as follows. Section 2 describes the60

DMD device, and Section 3 presents the spacecraft attitude dynamics. Section
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4 describes the control objective and the control development. Section 5 shows

the corresponding Lyapunov-based stability analysis. Sections 6 and 7 present

the numerical simulation and conclusion, respectively.

2. Drag Maneuvering Device65

In this paper, the controller design is based on the DMD developed in [12].

It consists of four repeatedly extendable/retractable 3.7 m long and 0.038 m

width surfaces offset 90 deg and inclined 20 deg with respect to the anti-ram

face of the spacecraft, as depicted in Figure 1.

Figure 1: Drag Maneuvering Device schematic.

The surfaces are fabricated from strips of austenitic 316 stainless steel shim70

stock with 0.0762 mm thickness, weighting approximately 95 g. Given the

weight of each boom and their lengths, significant changes in aerodynamic and

gravity gradient torques can be created by independently modulating the length

of each DMD surface. When the surfaces are fully extended, the DMD provides

an increase of the cross-wind surface area up to 0.5 m2.75

3. Attitude Dynamics

3.1. Reference Frames

The Earth-Centered-Inertial (ECI) reference frame is considered the inertial

reference frame. The orbital coordinate system is defined as: origin located
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at the CoM of the spacecraft. The unit vector ô3 points from the center80

of the Earth towards the spacecraft CoM, the unit vector ô2 is aligned with

the orbit angular momentum, and the unit vector ô1 completes a right-hand

Cartesian coordinate system. The body coordinate system is defined with the

origin located at the CoM of the spacecraft, and the unit vectors b̂1, b̂2 and

b̂3 aligned with the longitudinal, lateral, and vertical axes of the spacecraft,85

respectively, as depicted in Figure 2.

Figure 2: Coordinate systems.

3.2. Equation of Motion

The spacecraft attitude dynamics are given by

J̇ω + Jω̇ + ω×Jω = τD + τL + τGG + δ, (1)

where ω ∈ R3 is the angular velocity of the body with respect to the inertial

reference frame, J ∈ R3×3 is the inertia matrix of the spacecraft, τGG ∈ R3

is the gravity gradient torque, and τD, τL ∈ R3 are the aerodynamic torques

due to drag and lift, respectively. The vector δ ∈ R3 denotes disturbances to

the system (e.g., magnetic torques). The skew symmetric matrix a× ∈ R3×3
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for a vector a , [a1 a2 a3]T ∈ R3 is defined as

a× ,


0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (2)

Remark 1. The design of the DMD considers surfaces made of austenitic

stainless steel, which is considered a non-magnetic material [12]. Therefore, the90

DMD surfaces are not expected to generate magnetic hysteresis torques. An

estimate of the maximum remaining magnetic moment of the spacecraft can be

computed following the procedure in [23] under the guidelines in [24] for a class

II spacecraft.

Assumption 1. The disturbance torque δ can be upper bounded as ‖δ‖≤ ζ0,95

where ζ0 ∈ R>0 is a known bounding constant.

3.3. Quaternion Representation of the Spacecraft Orientation

The quaternion q ∈ R4 represents the rotation of the spacecraft body with

respect to an inertial frame, expressed in the body coordinate system as [25]

q ,
[
q0 qv

T
]T
, (3)

where q0 ∈ R and qv = [q1 q2 q3]T ∈ R3. The quaternion q has the property100

qv
Tqv + q0

2 = 1. (4)

The rotational kinematics of the spacecraft is defined as

q̇v ,
1

2

(
q×v + q0I3

)
ω (5)

q̇0 , −
1

2
qv

Tω, (6)

where I3 ∈ R3×3 denotes the identity matrix. To specify a desired time-varying

attitude trajectory, we also define a desired quaternion qd ∈ R4 as

qd ,
[
q0d qvd

T
]T
, (7)
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where q0d ∈ R and qvd ∈ R3. Using (5) and (6), the angular velocity ω can

be expressed in terms of q as105

ω = 2 (q0q̇v − qvq0)− 2q×v q̇v, (8)

and the desired angular velocity of the body ωd with respect to the inertial

frame can be expressed in the desired body coordinate system as

ωd = 2 (q0dq̇vd − qvdq0d)− 2qvd
×q̇vd. (9)

For simplicity, the attitude dynamics will be expressed in the body coordi-

nate system in the subsequent stability analysis. Therefore, it is useful to define

the matrices that represent the actual and desired orientation of the body with110

respect to the inertial frame, which are denoted by R ∈ SO(3) and Rd ∈ SO(3),

respectively, as [25]

R ,
(
q2
0 − qvTqv

)
I3 + 2qvqv

T − 2q0qv
×, (10)

Rd ,
(
q2
0d − qvdTqvd

)
I3 + 2qvdqvd

T − 2q0dqvd
×. (11)

The error quaternion e , [e0 ev
T ]T ∈ R4 that represents the mismatch between

q and qd is defined as

ev , q0dqv − q0qvd + qv
×qvd, (12)

e0 , q0q0d + qv
Tqvd, (13)

which satisfies the property115

ev
Tev + e0

2 = 1, (14)

and obeys the error quaternion kinematics [25]

ėv =
1

2

(
ev
× + e0I3

)
ω̃, (15)

ė0 = −1

2
ev

T ω̃. (16)
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In (15) and (16), ω̃ ∈ R3 denotes the error in the angular velocity of the

spacecraft

ω̃ , ω − R̃ωd, (17)

where R̃ ∈ R3×3 is the rotation matrix used to express ωd in the body coor-

dinate system, and is defined as120

R̃ , RRTd =
(
e0

2 − evTev
)
I3 + 2evev

T − 2e0ev
×. (18)

3.4. Aerodynamic Torques

A spacecraft in LEO experiences drag and lift forces on every surface exposed

to the incoming atmosphere particles. In the case of a DMD-equipped CubeSat,

the surface areas of the DMD are significantly larger than those of the body so

that the latter can be neglected. The drag force FD,j ∈ R3 and the lift force125

FL,j ∈ R3 are assumed to act on the geometric center of each DMD surface and

can be expressed as

FD,j = −ρwbLjCD,j
2

‖V ⊥,j‖2
Vr

‖Vr‖
(19)

and

FL,j = −ρwbLjCL,j
2

‖V ⊥,j‖2
(
Vr

‖Vr‖
× nj ×

Vr

‖Vr‖

)
. (20)

In (19) and (20), the subscript j indicates the jth DMD surface, ρ ∈ R is

the atmospheric density, CD,j , CL,j , wb, Lj ∈ R are drag and lift coefficients,

and the width and length of the corresponding DMD surface, respectively. The

spacecraft-atmosphere relative velocity vector Vr ∈ R3, assuming that the at-

mosphere co-rotates with the Earth, is defined as

Vr , Ṙc − ω⊕ ×Rc, (21)

where ω⊕ ∈ R3 is the angular velocity of the Earth, and Rc, Ṙc ∈ R3 represent

the ECI position and velocity of the spacecraft, respectively. The vector nj ∈ R3
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is a unit vector that represents the direction normal to the jth DMD surface130

and V⊥,j , Vr·nj .

Remark 2. Density models with different levels of accuracy have been de-

veloped throughout the years. The U.S Standard [26] and Harris-Priester [27]

models are altitude-based theoretical models that provide values for the atmo-

spheric density based on the spacecraft altitude at a low computational cost.135

More accurate and complex models, such as the NRLMSISE-00 [28] also incor-

porate data gathered from real missions to provide atmospheric density values

dependent on the date, time, spacecraft position as well as solar and geomag-

netic indices. However, more complex density models require significantly higher

computational effort and forecasts of solar and geomagnetic activity that are af-140

fected by additional uncertainties. Given the multiple sources of uncertainty

and approximations in the density models, the error is still significant even with

the most accurate ones [29].

The subsequent development is based on the analytical models for drag and

lift coefficients presented in [30] that assume flat plates in a free molecular flow145

as

(22)
CD,j ,

2

s
√
π

exp(−s2 sin2(θin))

+
sin(θin)

s2
(1 + 2s2)erf(s sin(θin)) +

√
π

s
sin2(θin)

√
Tk,out/Ta

CL,j ,
cos(θin)

s2
erf(s cos(θin)) +

1

s

√
π cos(θin) sin(θin)

√
Tk,out/Ta, (23)

where erf(·) represents the error function [31], s , ‖Vr‖
√
m/(2kBTa) ∈ R

is an auxiliary variable, m ∈ R is the mass of the spacecraft, kB ∈ R is

the Boltzmann constant, θin ∈ R is the principal rotation angle between Vr

and nj , and Ta ∈ R is the ambient atmosphere temperature. The kinetic

temperature of reflected particles at the surface Tk,out ∈ R is defined as

Tk,out ,
m

3kB
‖V r‖2(1− α) + αTs, (24)
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where Ts ∈ R is the temperature of the surface, and α ∈ R is an accommodation

coefficient that represents the influence of the surface material properties.

The torques produced by aerodynamic drag and lift are given by

τk ,
4∑
j=1

Rj
×Fk,j , k = D,L, (25)

where Rj , rc + rj , rc , [c1 c2 c3]T ∈ R3 is the uncertain vector that goes150

from the spacecraft CoM to the geometric center of the rear face of the CubeSat

(O′), and rj ∈ R3 is the vector that goes from O′ to the center of pressure of

the jth DMD surface. Given the geometry and capabilities of the DMD, the

vector rc also varies with the level of deployment of the drag surfaces.

3.5. Gravity Gradient Torque155

The DMD-equipped CubeSat, considered a rigid body in space, experiences a

gradient of gravitational force along the body with the greatest attraction on the

parts that are closer to the Earth. This gradient produces the so-called Gravity

Gradient Torque (GGT) that depends on the attitude and inertia properties.

The GGT is given by [32]160

τGG ,
3GM⊕
‖Rc‖5

Rc
×JRc, (26)

where M⊕ ∈ R>0 is the mass of the Earth, and G ∈ R>0 is the universal

gravitational constant.

The GGT can be changed by extending/retracting the DMD surfaces which

directly affect the inertia matrix. A simple model to compute the variation of

the inertia matrix by assuming DMD surfaces that can be divided as a thick165

walled cylinder (rolled portion) and a flat plate (deployed portion) [17], is used

to propagate the attitude dynamics for the numerical simulation in Section 6.
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4. Control Design

4.1. Control Objective

The objective is to design an adaptive controller for the spacecraft attitude to170

track a given time-varying reference qd using only the influence of environmental

torques on the spacecraft attitude dynamics as described in (1). Uncertainties

associated with the average atmospheric density ρ and drag coefficient CD have

been addressed in previous work from the authors in [19]. However, assumptions

such as perfect knowledge of the inertia matrix J and the location of the CoM175

rc were made to achieve the control objective along with on-line parameter

estimation. In this work, at the cost of losing the on-line parameter estimation

feature, an augmented vector is proposed to compensate for the uncertainties.

Although analytical models to compute the variation of the inertia matrix

can be developed, modeling approximations are inherent and lead to uncertain180

disturbances. Moreover, modeling deviations in the CoM location will also result

in inaccurately computing levels of deployment for the DMD surfaces to produce

the torques required by a designed control law.

To achieve the proposed control objective, the subsequent control design will

be performed under the following assumptions.185

Assumption 2. The spacecraft has the capability of using the computa-

tionally light Harris-Priester model [27] to calculate the atmospheric density

ρHP ∈ R>0 on-board. The real atmospheric density, whose behavior is more

complex than what is captured by the Harris-Priester model, is assumed to be

approximated by190

ρ , B1 +B2 ρHP , (27)

where B1, B2 ∈ R are unknown calibration constants.

Assumption 3. The spacecraft is capable of approximately computing its

time-varying inertia matrix Jm ∈ R3×3, provided an on-board simplified ana-
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lytical model. The actual inertia matrix J can be expressed as

J = Jm + ∆J, (28)

where ∆J ∈ R3×3 is the mismatch between the actual and modeled inertia195

matrix. The inertia mismatch ∆J , as well as its time derivative ∆J̇ , are

assumed bounded by known constants. Moreover, since the DMD surfaces are

driven by motors with limited velocity, then the rate of change of the inertia

matrix J̇ can also be bounded by a known constant.

Assumption 4. The desired quaternion qd, desired angular velocity ωd and

its time derivative ω̇d are known and bounded signals such that

‖qd‖≤ ζ1, ‖ωd‖≤ ζ2, ‖ω̇d‖≤ ζ3, (29)

where ζ1, ζ2, ζ3 ∈ R>0 are known bounding constants.200

Assumption 5. The spacecraft is equipped with an attitude determination

system that provides the controller with measurements of the angular velocity

ω and quaternion q.

Since the components of e satisfy (14), the attitude control objective can

be established as

R̃→ I3 as t→∞. (30)

Based on (12)-(14), the control objective in (30) can be achieved if

‖ev‖→ 0⇒| e0 |→ 1. (31)

4.2. Control Development205

Let the modified state vector r ∈ R3 be defined as

r , ω̃ + βev, (32)

where β ∈ R3×3 is a symmetric, positive-definite control gain matrix. Taking

the time derivative of r and pre-multiplying by the inertia matrix J yields

J ṙ = τD+τL+
3GM⊕
‖Rc‖5

Rc
×JRc+δ−J̇ω−ω×Jω−J ˙̃

Rωd−JR̃ω̇d+Jβėv. (33)
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Using (15), (17), Assumption 3 and the fact that
˙̃
R = −ω×R̃ yields

J ṙ = f + Ñ +NB, (34)

where f, Ñ, NB ∈ R3 are auxiliary variables defined as

(35)
f , τD + τL +

3GM⊕
‖Rc‖5

Rc
×JmRc − J̇mω

− ω×Jmω + Jmω
×R̃ωd − JmR̃ω̇d + Jmβėv,

(36)
Ñ , −∆J̇ω̃ − ω̃×∆J

(
ω̃ + R̃ωd

)
−
(
R̃ωd

)×
∆Jω̃

+ ∆Jω̃×R̃ωd +
1

2
∆Jβ

(
ev
× + e0I3

)
ω̃,

(37)NB , −∆J̇R̃ωd −
(
R̃ωd

)×
∆JR̃ωd +

3GM⊕
‖Rc‖5

Rc
×∆JRc + δ −∆JR̃ω̇d.

Since ω̃ = r − βev, and considering that ‖Rc‖ can be upper bounded by210

a known constant. Using Assumptions 3 and 4, Ñ and NB can be upper

bounded as

‖Ñ‖ ≤ σ (‖η‖) ‖η‖, (38)

‖NB‖ ≤ ζ4, (39)

where ζ4 ∈ R>0 is a known bounding constant, η ∈ R6 is an augmented state

vector defined as

η ,
[
ev

T rT
]T
, (40)

and σ : R6 → R is a positive, globally invertible and non-decreasing function.215

To include the adaptation capabilities that compensate for the unknown

parameters, the term f that contains only measurable states and the modeled

inertia matrix Jm, can be linearly parameterized with respect to the unknown

parameters. First, consider the contribution of the jth DMD surface to the

13



force due to the aerodynamic drag and lift FAT,j ∈ R3 which can be expressed220

using Assumption 2 as

FAT,j , YjΘj , j = 1, 2, 3, 4. (41)

In (41) Yj ∈ R3×4 are measurable regression matrices defined as

Yj ,[
− Ljwb‖V⊥,j‖2

2‖Vr‖
Vr [1 ρHP ] − Ljwb‖V ⊥,j‖2

2

(
Vr

‖Vr‖
× nj ×

Vr

‖Vr‖

)
[1 ρHP ]

]
(42)

and the vectors Θj ∈ R4 are

Θj ,
[
B1CD,j B2CD,j B1CL,j B2CL,j

]T
. (43)

Therefore, the total aerodynamic torque τAT,j ∈ R3 due to the aerodynamic

drag and lift in (25) can be rewritten as

τAT , τD + τL = rc
×

4∑
j=1

(YjΘj) +

4∑
j=1

(
rj
×YjΘj

)
. (44)

In (44), the first term can be expressed as225

rc
×

4∑
j=1

(YjΘj) =


01×16 Yr(3) −Yr(2)

−Yr(3) 01×16 Yr(1)

Yr(2) −Yr(1) 01×16




Θrc1

Θrc2

Θrc3

 , (45)

where Yr ∈ R3×16 is a measurable regression matrix defined as

Yr ,
[
Y1 Y2 Y3 Y4

]
, (46)

and Yr(k) denotes the kth row of Yr. Similarly, the vector of uncertain

parameters Θr ∈ R16 is defined as

Θr ,
[
Θ1

T Θ2
T Θ3

T Θ4
T
]T
. (47)
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The second term in (44) can be expressed as

4∑
j=1

(
rj
×YjΘj

)
=

4∑
j=1



Yj(3)rj,2 − Yj(2)rj,3

Yj(1)rj,3 − Yj(3)rj,1

Yj(2)rj,1 − Yj(1)rj,2

Θj

 , (48)

where rj , [rj,1 rj,2 rj,3]T is the vector defined in (25), and Yj(k) denotes the

kth row of Yj . Substituting (45) and (48) into (44) yields

τAT = YATΘAT , (49)

where YAT ∈ R3×64 is a measurable regression matrix and ΘAT ∈ R64 is a

vector of uncertain parameters, and are defined as230

YAT =
01×16 Yr(3) −Yr(2) Y1(3)r1,2 − Y1(2)r1,3 · · · Y4(3)r4,2 − Y4(2)r4,3

−Yr(3) 01×16 Yr(1) Y1(1)r1,3 − Y1(3)r1,1 · · · Y4(1)r4,3 − Y4(3)r4,1

Yr(2) −Yr(1) 01×16 Y1(2)r1,1 − Y1(1)r1,2 · · · Y4(2)r4,1 − Y4(1)r4,2

 ,
(50)

(51)ΘAT =
[
Θr

T c1 Θr
T c2 Θr

T c3 Θr
T
]
T ,

respectively. Therefore, (35) can be rewritten as

f = YΘ, (52)

where Y ,
[
YAT

3GM⊕

‖Rc‖5
R×c JmRc − J̇mω − ω×Jmω + Jmω

×R̃ωd − JmR̃ω̇d +

Jmβėv

]
∈ R3×65 is the measurable augmented regression matrix, and Θ ,[

ΘAT
T 1
]T
∈ R65 is the augmented vector of uncertain parameters.

Assumption 6. The time-varying vector of uncertain parameters Θ and its235

time derivative, i.e., Θ̇, are bounded by known constants. The bounds for Θ

are given by

Θ ≤ Θ ≤ Θ, (53)
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where Θ, Θ ∈ R65 are constant vectors containing the lower and upper bounds

of Θ, respectively.

Define the estimation error Θ̃ ∈ R65 as240

Θ̃ = Θ− Θ̂, (54)

where Θ̂ ∈ R65 is the estimate of Θ. Using (52) and (54), and adding and

subtracting the term Y Θ̂ to the open-loop error system in (34) yields

J ṙ = Y Θ̃ + Y Θ̂ + Ñ +NB. (55)

The regression matrix Y contains measurable states and is influenced by the

actual inputs (i.e., the DMD surfaces lengths L1, L2, L3, L4), while the update

law for the estimated vector Θ̂ will be subsequently designed. Therefore, the245

measurable product Y Θ̂ can be altered by modulating the length of the DMD

surfaces. This term is designated as the auxiliary control input ū ∈ R3

Y Θ̂ , ū. (56)

To facilitate the subsequent stability analysis, let the desired auxiliary control

signal ūd ∈ R3 be designed as

ūd , −K1r − β1ev, (57)

where β1 ∈ R>0 is a positive constant gain, and K1 ∈ R3×3 is a constant,

positive-definite control gain matrix. Adding and subtracting ūd and substi-

tuting (56) and (57) into (55) yields the closed-loop error system

J ṙ = Y Θ̃ + Ñ +NB + χ−K1r − β1ev, (58)

where χ , ū− ūd ∈ R3 represents the mismatch between the desired and the

actual auxiliary control inputs. Based on (58), the gradient-based adaptation

law is designed as

˙̂
Θ , proj(ΓY Tr), (59)
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where Γ ∈ R65×65 is a constant, positive-definite adaptation gain matrix, and

proj(·) denotes the continuous projection algorithm presented in [33]. Based on

the value of (·) and the known bounds of Θ̂, the design in
˙̂
Θ ensures Θ̂ remains250

within the known bounded region without altering the stability of the system

nor introducing undesired discontinuities.

5. Stability Analysis

To facilitate the stability analysis, some definitions are introduced. Let

λ1, λ2, λ3, λ4 ∈ R>0 be defined as λ1 , λmin{K1}− ζ5 − 1, λ2 , β1λmin{β},

λ3 , min (λ1, λ2), and λ4 , λ3 − σ2(‖η‖)
2 , respectively, where β is the control

gain defined in (32), K1, β1 are the control gains used in (57), σ (‖η‖) is

the function defined in (38), ζ5 ∈ R>0 is a known bounding constant, and

λmin{·} ∈ R is the minimum eigenvalue of {·}. Let the set D be defined as

D ,
{
η
∣∣∣ ‖η‖< σ−1

(√
2λ3

)}
, and let S ⊂ D be defined as

S ,
{
η ∈ D

∣∣∣ ‖η‖< Λ
}
, (60)

where Λ ,
√

λ

λ̄

(
σ−1

(√
2λ3

))2 − ζ̄−ζ
λ̄

, and λ, λ̄, ζ, ζ̄ ∈ R>0 are known

bounding constants.255

Theorem. Consider the spacecraft attitude dynamics governed by the non-

linear system in (1) with Assumptions 1-5. The auxiliary controller in (57) and

the adaptive update law in (59) ensure uniformly ultimately bounded attitude

tracking in the sense that

‖ev‖≤ ε1exp {−ε2t}+ ε3, (61)

where ε1 ,
√

λ̄‖η(0)‖2+ζ
λ ∈ R>0, ε2 ,

λ4

2λ̄
∈ R>0, ε3 ,

√
λ̄
λ4λ

ζ8 +
ζ−ζ
λ ∈

R>0, ζ8 , ζ6+ (ζ4+ζ7)2

2 ∈ R>0, and ζ6, ζ7 ∈ R>0 are known bounding constants.

Provided that η(0) ∈ S is satisfied, and that the control gains are selected

sufficiently large such that λ1 > 0, and Λ > ε3.

Proof. Let V ∈ R≥0 be a candidate Lyapunov function defined as260

V (t) ,
1

2
rTJr + β1ev

T ev + β1(1− e0)2 +
1

2
Θ̃
T

Γ−1Θ̃. (62)
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The Lypaunov function can be upper and lower bounded as

λ‖η‖2+ζ ≤ V (t) ≤ λ̄‖η‖2+ζ. (63)

Substituting (15), (16), (32), (54) and (58) into the time derivative of (62), and

using the fact that ev
T ev
×ω̃ = 0, yields

V̇ (t) = rT
(
Y Θ̃ + Ñ +NB + χ−K1r

)
+

1

2
rT J̇r

− β1ev
Tβev + Θ̃

T
Γ−1Θ̇− Θ̃

T
Γ−1 ˙̂

Θ.

(64)

Substituting the adaptive update law in (59) into (64), yields

V̇ (t) = rT Ñ +rTNB +rTχ−rTK1r−β1ev
Tβev +

1

2
rT J̇r+ Θ̃

T
Γ−1Θ̇. (65)

In (64), the last two terms can be upper bounded using Assumptions 3 and 6

as

1

2
rT J̇r ≤ ζ5‖r‖2, (66)

Θ̃
T

Γ−1Θ̇ ≤ ζ6. (67)

Using (38), (39), (66) and (67), (65) can be upper bounded as

(68)V̇ (t) ≤ − (λmin{K1} − ζ5) ‖r‖2

− β1λmin{β}‖ev‖2 + σ(‖η‖)‖η‖‖r‖+ (ζ4 + ‖χ‖) ‖r‖+ζ6.

Assumption 7. A numerical optimization algorithm can be used to find a265

suitable set of DMD surface lengths (i.e., L1, L2, L3 and L4) that minimizes

‖χ‖, and the resulting χ can be upper bounded by a constant for the entire

maneuver such that ‖χ‖≤ ζ7.

Using Young’s inequality on the term σ(‖η‖)‖η‖‖r‖ yields σ(‖η‖)‖η‖‖r‖≤
σ2(‖η‖)‖η‖2

2 + 1
2‖r‖

2. Similarly, the inequality (ζ4 + ‖χ‖) ‖r‖≤ 1
2‖r‖

2+ (ζ4+ζ7)2

2

can be obtained using Assumption 7. Therefore, (68) can be rewritten as

V̇ (t) ≤ −λ1‖r‖2−λ2‖ev‖2+
σ2(‖η‖)‖η‖2

2
+ ζ8. (69)
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The expression in (69) can be further upper bounded as

V̇ (t) ≤ −
(
λ3 −

σ2(‖η‖)
2

)
‖η‖2+ζ8. (70)

Provided η ∈ D, then (70) can be rewritten as

V̇ (t) ≤ −λ4‖η‖2+ζ8 ∀η ∈ D. (71)

Using the bounds in (63), (71) can be rewritten as270

V̇ (t) ≤ −λ4

λ
V (t) + ε0, (72)

where ε0 , ζ8 + λ4ζ

λ
. By invoking the Comparison Lemma from [34], the

solution to (72) can be obtained as

V (t) ≤ exp

{
−λ4

λ
t

}
V (0) +

λ

λ4
ε0

(
1− exp

{
−λ4

λ
t

})
. (73)

Using (63) and (73) yields

‖η‖2≤
(
λ‖η(0)‖2+ζ

λ

)
exp

{
−λ4

λ
t

}
+

(
λ

λ4λ
ζ8 +

ζ − ζ
λ

)
. (74)

Using (40) and (74) yields the uniformly ultimately bounded result in (61)

provided η(0) ∈ S, where uniformity in initial time can be concluded from the

independence of λ3 and the ultimate bound from ε3 at time t = 0. From (62),

(63) and (73), then r ∈ L∞. Then, from (17) and (32), ω ∈ L∞. Similarly,

from (15) and (16), ėv, ė0 ∈ L∞. Since r, ω ∈ L∞, and ev, e0, ωd ∈ L∞
by definition, then ūd ∈ L∞ by (57). Since Θ̂ ∈ L∞ by (59), ūd ∈ L∞, and

χ ∈ L∞ by Assumption 7, therefore Y ∈ L∞ using (56). �

6. Simulation Results

The simulations presented in this section are performed using the 4th order

Runge-Kutta fixed-step algorithm to propagate the orbital and attitude dy-

namics. The first simulation, in Subsection 6.1, illustrates the performance of

the controller when required to achieve a fixed orientation relative to the orbital
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frame (regulation maneuver). The second simulation, in Subsection 6.2, presents

the result obtained using the controller to track a time-varying reference rela-

tive to the orbital frame (tracking maneuver). Effects of aerodynamic drag and

lift, gravity gradient torque and J2 perturbation are included in the spacecraft

dynamics. The NRLMSISE-00 atmospheric model is used as the true (unknown

for the controller) atmospheric density. The control law in (57) is computed ev-

ery 30 seconds to allow finding a suitable set of DMD surfaces lengths through

the formulation of a constrained function minimization problem that minimizes

‖χ‖, and includes the physical length constraints of the DMD surfaces. The

MATLAB fmincon command is used to solve the minimization problem

min
L1,L2,L3,L4

‖Y Θ̂− ūd‖ subject to
{

0 ≤ Lj ≤ 3.7, j = 1, 2, 3, 4. (75)

The spacecraft is simulated in a circular orbit with inclination of 51.94275

degrees and 400 km altitude, similar to that of the International Space Station

(ISS). The initial orbital elements and spacecraft parameters are presented in

Tables 1 and 2, respectively. Additionally, the simulations also incorporate

modeling inaccuracies in the CoM location and inertia matrix. For visualization

purposes, in the subsequent simulation results, the orientation of the body with280

respect to the orbital frame is expressed using a 3-2-1 Euler angle sequence,

where φ, θ and ψ denote the roll, pitch and yaw angles, respectively (see [17]

for details). The roll, pitch and yaw angles correspond to rotations about b̂1, b̂2

and b̂3, respectively. Simulation parameters, initial conditions and uncertainties

are the same for both simulation examples. The initial conditions (φ0, θ0, ψ0)285

are presented in Table 3.
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Parameter Value

Semi-Major Axis [m] 6778× 103

Eccentricity 0

Inclination [deg] 51.94

RAAN [deg] 206.26

Arg. of Perigee [deg] 101.07

True Anomaly [deg] 108.08

Table 1: Initial orbital parameters for simulation of regulation and tracking maneuvers.

Parameter Value

CubeSat Body Mass [kg] 3

DMD Surface Mass [kg] 9× 10−2

Max. DMD Surface Length [m] 3.7

DMD Surface Width [m] 3.8× 10−2

Table 2: Spacecraft parameters for simulation of regulation and tracking maneuvers.

Parameter Value

φ0 [deg] 45

θ0 [deg] −60

ψ0 [deg] 50

φ̇0 [deg/s] 5× 10−2

θ̇0 [deg/s] −7.5× 10−2

ψ̇0 [deg/s] 6× 10−2

Table 3: Initial Euler angles and angle rates for simulation of regulation and tracking

maneuvers.
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6.1. Regulation Maneuver

To propagate the spacecraft dynamics, a model to compute the inertia ma-

trix Jm as function of the DMD-surfaces lengths is used. Specifically, Jm is

computed by representing a 2U CubeSat structure as a rectangular box, and the290

rolled and deployed portions of a DMD-surface are modeled as a thick walled

cylinder and a flat plate, respectively. The inaccuracy of Jm is introduced by

incorporating deviations in the mass for each part of the spacecraft and the

assumed locations of their individual CoMs are shown in Table 4.

Parameter Real (for J) Approx. (for Jm)

CoM CubeSat Body [cm] [0 0 0]T [1.8 2 − 3]T

CoM Flat Plate (×10−2) [m] [0 0 0]T [4.5L2
j 0 0]T

Deployer mass [g] 89.88 75

Table 4: Uncertainties included in simulation to compute Jm. CoMs expressed in

coordinate systems centered at the geometric center of the body of interest, where

j = 1, 2, 3, 4.

The objective for this maneuver is to achieve a fixed orientation of the space-295

craft with respect to the orbital frame. The controller parameters are shown in

Table 5, and the desired Euler angles are presented in Table 6. Figures 3 and

4 show the resulting quaternion error components and the corresponding trans-

formation to Euler angles for a 10 hour simulation, respectively. The results

show that the regulation objective was achieved with ultimate bounds for roll,300

pitch and yaw within ±3, ±2 and ±2.2 degrees, respectively.

As concluded in the stability analysis, the resulting ultimate bound can be

attributed to the size of the disturbance torques in δ, the residual error χ, the

unmodeled effects of the DMD on the inertia matrix, and the rate of change

of the uncertain parameters (i.e., Θ̇). Therefore, efforts on improving the305

knowledge of the inertia matrix, using a good numerical algorithm to solve for

the lengths and avoiding high deployment rates, would have direct influence on

reducing the ultimate bounds.
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The levels of deployment for the DMD surfaces are shown in Figure 5. Ac-

tuator saturation was applied to account for the physical limits of the DMD310

surfaces. Although this saturation was not explicitly modeled in the controller

design, the controller has shown to be robust enough to regulate the orienta-

tion despite the physical actuator limits. In an effort to reduce the influence

of rapid variations of the control inputs, a low-pass filter with cutoff frequency

ωc , 0.017 Hz has been applied to the lengths calculated by the fmincon al-315

gorithm and the maximum deployment rate among all DMD surfaces for this

maneuver was 2.9 meters per minute. The norm of the resulting mismatch

between ū and ūd (i.e., ‖χ‖) is shown in Figure 6. Due to the amplitude

limitations of the environmental torques, the actuators reached their saturation

limits multiple times during approximately the first five hours of the maneuver.320

However, after the period of saturation, ‖χ‖ remained below 1× 10−6 Nm.

The estimated parameters in Θ̂ are shown in Figures 7 and 8 for the pa-

rameters associated with the aerodynamic drag and in Figures 9 and 10 for

the parameters associated with the aerodynamic lift. The estimations are di-

vided into four plots to better observe their variation over time because of their325

different orders of magnitude. From the stability analysis, it cannot be con-

cluded that the estimation error Θ̃ converges to zero, meaning that there is

no on-line parameter estimation. However, the results show that all parame-

ters are dynamically adjusted to compensate for the environmental and physical

uncertainties and remain bounded.330
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Parameter Value

K1 (×10−3) diag(3, 3, 3)

β
(
×10−3

)
diag(1.5, 5, 5)

β1

(
×10−6

)
3.2

Γ diag
(
Γ2,Γ2,Γ2,Γ2, 6Γ2, 6Γ2,Γ1,Γ1, 10−20

)
Γ1

(
×10−19

)
diag

(
1, 1011, 1, 1011, 1, 1011, 1, 1011

)
Γ2

(
×10−22

)
diag

(
2, 211, 2, 211, 2, 211, 2, 211

)
Table 5: Controller parameters used for simulation of regulation and tracking maneu-

vers.

φd [deg] θd [deg] ψd [deg]

45 0 10

Table 6: Desired orientation of the spacecraft with respect to the orbital frame for the

regulation maneuver.

Figure 3: Resulting error quaternion for the regulation maneuver using the designed

controller.
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Figure 4: Resulting Euler angles for the regulation maneuver using the designed con-

troller.

Figure 5: Required level of deployment for the DMD surfaces using the designed con-

troller for the regulation maneuver.
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Figure 6: Resulting mismatch ‖χ‖ obtained using MATLAB fmincon to solve for the

DMD surfaces lengths for the regulation maneuver.

Figure 7: Resulting parameter estimates B̂1ĈD,j in Θ̂ with j = 1, 2, 3, 4 associated

with the aerodynamic drag for the regulation maneuver using the designed controller.
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Figure 8: Resulting parameter estimates
[
ĉ1B̂1ĈD,j , ĉ1B̂2ĈD,j , ĉ2B̂1ĈD,j , ĉ2B̂2ĈD,j ,

ĉ3B̂1ĈD,j , ĉ3B̂2ĈD,j

]T
in Θ̂ with j = 1, 2, 3, 4 associated with the aerodynamic drag

for the regulation maneuver using the designed controller.

Figure 9: Resulting parameter estimates B̂1ĈL,j in Θ̂ with j = 1, 2, 3, 4 associated

with the aerodynamic lift for the regulation maneuver using the designed controller.
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Figure 10: Resulting parameter estimates
[
ĉ1B̂1ĈL,j , ĉ1B̂2ĈL,j , ĉ2B̂1ĈL,j , ĉ2B̂2ĈL,j ,

ĉ3B̂1ĈL,j , ĉ3B̂2ĈL,j

]T
in Θ̂ with j = 1, 2, 3, 4 associated with the aerodynamic lift

for the regulation maneuver using the designed controller.

For the specific spacecraft and orbit considered in the regulation example,

a feasible range of operation including saturation of the control inputs is deter-

mined by performing a set of 1000 five-hour simulations of regulation maneuvers.

The initial conditions and the desired Euler angles are randomly initialized as

shown in Table 7. The set of possible desired Euler angles has been selected so335

that the operational range for a more demanding mission as compared to the

previous example is considered (e.g., pointing a camera on the ram/anti-ram

face of the spacecraft to a given objective).

To point the b̂1 body axis towards any direction inside a cone of limited

size with respect to the along-track direction ô1, it is sufficient to vary the340

desired roll and yaw angles. The size of the cone is driven by the bounds of

the yaw angle and all directions inside the cone are explored by varying the roll

angle. For all simulations, the spacecraft is considered stabilized if ‖ev‖≤ 0.4

(user-defined) on average during the last 20 minutes of the maneuver, which

was found representative for successful maneuvers considering the ultimately345

bounded result from the stability analysis. Figure 11 presents the percentage of
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stabilized maneuvers with different limits for the norm of the yaw angle ‖ψ‖

(i.e., cone sizes). Figure 12 illustrates the difference in size between cones result-

ing from yaw bounds of ±8 and ±25 degrees, with percentages of success of 80%

and 70%, respectively. The remaining percentage of failure can be attributed350

to several factors including the limitations due to the DMD geometry, initial

conditions, and variations of atmospheric density, among others.

Parameter Range

φ0, θ0, ψ0 [deg] [−10, 10]

φ̇0, θ̇0, ψ̇0 [deg/s] [−0.02, 0.02]

φd [deg] [−180, 180]

θd [deg] 0

ψd [deg] [−25, 25]

Table 7: Parameter ranges for the set of 1000 five-hour simulations.

Figure 11: Resulting percentage of successful regulation maneuvers vs. size of the cone.
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Figure 12: Resulting feasible range of operation, 8 degrees (80%), 25 degrees (70%).

6.2. Tracking Maneuver

The simulation presented in this subsection illustrates a scenario where the

CubeSat is required to change its orientation with respect to the orbital frame355

over time. This task could be required for missions where the spacecraft needs

to adjust its orientation for pointing a sensor (e.g., a camera) towards different

areas during the mission. The scenario considers a spacecraft that is required

to track a desired trajectory of the roll angle while keeping the pitch and yaw

angles fixed. The initial conditions and control parameters are the same used360

for the regulation maneuver, and the desired Euler angles are presented in Table

8.

Figures 13 and 14 show the resulting quaternion error components and the

corresponding transformation to Euler angles for a 10 hour simulation. These

results show that the CubeSat orientation reaches the ultimate bound in approx-365

imately 5 hours. The ultimate bounds for roll, pitch and yaw are ±3, ± 1.5

and ±3 degrees, respectively.

The resulting lengths of the DMD are shown in Figure 15, where satura-

tion to account for the physical constraints was applied. The DMD surfaces

reached their saturation levels multiple times during the first two hours of the370
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simulation, and the controller has shown to be robust during that portion of

the maneuver. The maximum deployment rate among all DMD surfaces for the

tracking maneuver was 2.6 meters per minute. Figure 16 shows the norm of

the mismatch between ū and ūd (i.e., ‖χ‖), after the period of saturation, it

remained below 8.9× 10−7 Nm.375

The estimated parameters in Θ̂ are shown in Figures 17 and 18 for pa-

rameters associated with the aerodynamic drag and in Figures 19 and 20 for

those associated with the aerodynamic lift. All the estimations remain bounded

and are dynamically adjusted to compensate for the uncertainties but on-line

estimation cannot be guaranteed.380

φd [deg] θd [deg] ψd [deg]

35 + 15 sin(4.36× 10−4t) 0 0

Table 8: Desired orientation of the spacecraft with respect to the orbital frame for the

tracking maneuver.

Figure 13: Resulting error quaternion for the tracking maneuver using the designed

controller.
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Figure 14: Resulting Euler angles for the tracking maneuver using the designed con-

troller.

Figure 15: Required level of deployment for the DMD surfaces using the designed

controller for the tracking maneuver.
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Figure 16: Resulting mismatch ‖χ‖ obtained using MATLAB fmincon to solve for the

DMD surfaces lengths for the tracking maneuver.

Figure 17: Resulting parameter estimates B̂1ĈD,j in Θ̂ with j = 1, 2, 3, 4 associated

with the aerodynamic drag for the tracking maneuver using the designed controller.
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Figure 18: Resulting parameter estimates
[
ĉ1B̂1ĈD,j , ĉ1B̂2ĈD,j , ĉ2B̂1ĈD,j ,

ĉ2B̂2ĈD,j , ĉ3B̂1ĈD,j , ĉ3B̂2ĈD,j

]T
in Θ̂ with j = 1, 2, 3, 4 associated with the aero-

dynamic drag for the tracking maneuver using the designed controller.

Figure 19: Resulting parameter estimates B̂1ĈL,j in Θ̂ with j = 1, 2, 3, 4 associated

with the aerodynamic lift for the tracking maneuver using the designed controller.
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Figure 20: Resulting parameter estimates
[
ĉ1B̂1ĈL,j , ĉ1B̂2ĈL,j , ĉ2B̂1ĈL,j , ĉ2B̂2ĈL,j ,

ĉ3B̂1ĈL,j , ĉ3B̂2ĈL,j

]T
in Θ̂ with j = 1, 2, 3, 4 associated with the aerodynamic lift

for the tracking maneuver using the designed controller.

To illustrate the approach taken to evaluate the effect that the applied

torques may have on the long DMD surfaces, a comparison between the fre-

quency content of the applied torque and the first natural frequencies of a DMD

surface was performed for the tracking maneuver. A fully deployed DMD sur-

face was modeled as a cantilevered beam and the first natural frequencies were385

computed using SolidWorks. Figure 21 illustrates the first five mode shapes and

their corresponding frequencies, and Figure 22 shows the Fast Fourier Trans-

form (FFT) of each component of the applied torque. From these figures, the

range of frequencies of the applied torques is reasonably below the first natural

frequency of the DMD surface (i.e., 0.1396 Hz).390
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Figure 21: First natural frequencies of a fully deployed DMD surface.

Figure 22: FFT of the torque Y Θ̂ applied during the tracking maneuver.

7. Conclusion

This paper presented the design and validation through numerical simula-

tion of an adaptive controller for environmental torques-based attitude control

36



that compensates for uncertainties in the atmospheric density, drag and lift co-

efficients, and center of mass location. Moreover, the controller also considers395

perturbations associated with the non-modeled behavior of the inertia matrix.

The obtained result ensures the alignment of the body and orbital frames within

ultimate bounds. Simulation results including aerodynamic and gravity gradi-

ent torques, actuator saturation, as well as the NRLMSISE-00 model for atmo-

spheric density and J2 perturbation, were performed to validate regulation and400

tracking of the angles to their desired values relative to the orbital frame within

bounds of ±3 deg. Therefore, the controller shows potential for applications

where the location of the center of mass, atmospheric density, drag coefficients

are uncertain and the inertia matrix cannot be accurately computed in real time.

Future work on this problem will consider strategies to address implementation405

challenges such as failures to deploy a DMD surface.
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