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Abstract

In this paper, the problem of controlling the attitude of a CubeSat in low
Earth orbit using only the environmental torques is considered. The CubeSat
is equipped with a Drag Maneuvering Device (DMD) that enables the space-
craft to modulate its experienced aerodynamic and gravity gradient torques.
An adaptive controller is designed to achieve attitude tracking of the space-
craft in the presence of uncertain parameters such as the atmospheric density,
drag and lift coefficients, and the time-varying location of the Center of Mass
(CoM). The proposed controller also accounts for modeling inaccuracy of the
inertia matrix of the spacecraft. A Lyapunov-based analysis is used to prove
that the quaternion-based attitude trajectory tracking error is uniformly ulti-
mately bounded. The designed controller is also examined through numerical
simulations for a spacecraft with time-varying uncertain drag, lift coefficients
and CoM location parameters and the NRLMSISE-00 model for the atmospheric
density.
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1. Introduction

Missions involving small satellites in Low Earth Orbit (LEO) have become
popular with the introduction of the CubeSat standard [1]. The limited volume
available in these satellites has increased the need to develop propellant-less
strategies for orbit and attitude control, usually exploiting the interaction of
the spacecraft with the low density atmosphere [2-6]. The idea of using the
drag force for relative orbit maneuvers was first introduced in [7]. Since then, a
wide variety of control strategies have been developed using both aerodynamic
lift and drag as the only control means [8-11]. To exploit such forces, dedicated
surfaces are installed on the spacecraft to increase its area-to-mass ratio, often
locating the center of pressure at distances with respect to the Center of Mass
(CoM) such that significant torques can be applied. This has led to the design
of CubeSats that can alter the aerodynamic torques by actively modulating
the length and angle of drag surfaces. Such designs often involve several ultra-
lightweight surfaces with two or more degrees of freedom [3, 4] so that the inertia
matrix does not change significantly and its time derivative can be neglected in
the attitude equations of motion.

The University of Florida ADvanced Autonomous MUltiple Spacecraft labo-
ratory (ADAMUS) has designed the Drag Maneuvering Device (DMD), formerly
Drag De-Orbit Device (D3) [12], and has been studying its capabilities for space-
craft controlled re-entry [13, 14], spacecraft relative maneuvering [15, 16] and
attitude control [17-19] by using its four dedicated surfaces to modulate the
experienced environmental forces and torques on a CubeSat. The design of the
DMD provides a CubeSat with four repeatedly extendable/retractable surfaces
offset 90 degrees from each other, and with 20 degrees inclination with respect
to the anti-ram face of the CubeSat. The DMD has passed through several pro-
totype iterations, and incorporates only one degree of freedom for each surface,
which makes it easier to build and less susceptible to failure of moving parts.
It is also capable of altering the CubeSat inertia matrix to make use of the

aerodynamic and the gravity gradient torques.
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Previous work in [19] presented the design of an integral concurrent learning-
based control method to provide simultaneous state tracking and on-line estima-
tion of uncertain parameters. These uncertain parameters included the average
drag coefficient and atmospheric density, and the time-varying CoM location
and inertia matrix were assumed known. However, in real operation, inaccurate
knowledge of these two parameters could reduce the performance or even desta-
bilize the system. Controllers that actively change the location of the CoM have
been proposed for spacecraft attitude control in [20] using PID, linear quadratic
regulator and partial feedback linearization techniques, and the developed con-
trol laws computed the location of the CoM so that the desired control torques
can be produced. The results in [20] demonstrate how the CoM location can
influence the overall performance of the system, making it necessary to account
for uncertainties in this parameter. The problem of having uncertainties in the
CoM location has been addressed in [21] for unmanned aerial vehicles using
an adaptive controller for constant CoM. In [22], adaptive control techniques
have been used to develop a propellant-based spacecraft attitude controller that
considers time-dependent or input-dependent inertia parameters to account for
deployable appendages or mass loss, respectively.

In this paper, the designed controller incorporates uncertainties in the CoM
location and time-varying drag and lift coefficients, as well as partial knowledge
of the inertia matrix of a DMD-equipped CubeSat. The cost for adding this
adaptation capability is that the on-line parameter estimation feature is lost
compared to [19]. However, the proposed controller provides improved robust-
ness to uncertainties in parameters that are inaccurate and time-varying. The
contribution of this paper is the design of an adaptive controller that exploits
environmental torques for spacecraft attitude maneuvers in the presence of un-
certainties in the time-varying CoM location, atmospheric density, drag and lift
coefficients with guaranteed bounded state tracking through a Lyapunov-based
stability analysis.

The remainder of this paper is organized as follows. Section 2 describes the

DMD device, and Section 3 presents the spacecraft attitude dynamics. Section
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4 describes the control objective and the control development. Section 5 shows
the corresponding Lyapunov-based stability analysis. Sections 6 and 7 present

the numerical simulation and conclusion, respectively.

2. Drag Maneuvering Device

In this paper, the controller design is based on the DMD developed in [12].
It consists of four repeatedly extendable/retractable 3.7 m long and 0.038 m
width surfaces offset 90 deg and inclined 20 deg with respect to the anti-ram

face of the spacecraft, as depicted in Figure 1.

ram
direction

Figure 1: Drag Maneuvering Device schematic.

The surfaces are fabricated from strips of austenitic 316 stainless steel shim
stock with 0.0762 mm thickness, weighting approximately 95 g. Given the
weight of each boom and their lengths, significant changes in aerodynamic and
gravity gradient torques can be created by independently modulating the length
of each DMD surface. When the surfaces are fully extended, the DMD provides

an increase of the cross-wind surface area up to 0.5 m?.

3. Attitude Dynamics

3.1. Reference Frames

The Earth-Centered-Inertial (ECI) reference frame is considered the inertial

reference frame. The orbital coordinate system is defined as: origin located
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at the CoM of the spacecraft. The unit vector 63 points from the center
of the Earth towards the spacecraft CoM, the unit vector 64 is aligned with
the orbit angular momentum, and the unit vector 67 completes a right-hand
Cartesian coordinate system. The body coordinate system is defined with the
origin located at the CoM of the spacecraft, and the unit vectors 51, by and
bs aligned with the longitudinal, lateral, and vertical axes of the spacecraft,
respectively, as depicted in Figure 2.

DS1

DS 4
A~ _.--Orbit
05 -
by
01, DS 2
/" DS 3
' Z

g— Y
X Earth

Figure 2: Coordinate systems.

3.2. Equation of Motion

The spacecraft attitude dynamics are given by

jw+JGJ+wXJw=TD+TL+TGG+57 (1)

where w € R3 is the angular velocity of the body with respect to the inertial
reference frame, J € R3*3 is the inertia matrix of the spacecraft, Tag € R3
is the gravity gradient torque, and Tp, 7 € R? are the aerodynamic torques
due to drag and lift, respectively. The vector & € R? denotes disturbances to

the system (e.g., magnetic torques). The skew symmetric matrix a* € R3*3



for a vector a £ [a; az az]’ € R? is defined as

0 —as as
a*Ela; 0 —a- (2)
—ao ay 0

Remark 1. The design of the DMD considers surfaces made of austenitic
o stainless steel, which is considered a non-magnetic material [12]. Therefore, the
DMD surfaces are not expected to generate magnetic hysteresis torques. An
estimate of the maximum remaining magnetic moment of the spacecraft can be
computed following the procedure in [23] under the guidelines in [24] for a class

IT spacecraft.
o5 Assumption 1. The disturbance torque 9 can be upper bounded as ||8]|< ¢,

where (o € Rs¢ is a known bounding constant. O

3.8. Quaternion Representation of the Spacecraft Orientation

The quaternion g € R* represents the rotation of the spacecraft body with

respect to an inertial frame, expressed in the body coordinate system as [25]

a2 [0 @], (3)

wo  where go € Rand ¢, = [¢1 ¢2 ¢3]7 € R?. The quaternion q has the property

Qv qv + 9% = 1. (4)

The rotational kinematics of the spacecraft is defined as

. 1

Go = 5 (g + qoZ3) w (5)
. 1

do = ,iquw’ (6)

where T3 € R3*3 denotes the identity matrix. To specify a desired time-varying
attitude trajectory, we also define a desired quaternion gq € R* as
}T

; (7)

qqa = [qu qudT
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where qog € R and g,q € R3. Using (5) and (6), the angular velocity w can

be expressed in terms of q as

w=2 (QOQv - QUQO) - 2(]541;, (8)
and the desired angular velocity of the body wg with respect to the inertial

frame can be expressed in the desired body coordinate system as

wa = 2 (qoddvd — Gvadod) — 2qvd” Gua- 9)

For simplicity, the attitude dynamics will be expressed in the body coordi-
nate system in the subsequent stability analysis. Therefore, it is useful to define
the matrices that represent the actual and desired orientation of the body with
respect to the inertial frame, which are denoted by R € SO(3) and Ry € SO(3),

respectively, as [25]

R2 (¢§— v qv) I3 + 2qvqu” — 2000, (10)
Ra 2 (¢6y — Qvd” Gva) T3 + 2qvaqud’ — 2004qva (11)
7]

The error quaternion e £ [eg e,7]7 € R* that represents the mismatch between

q and gqq is defined as

€y = q0agv — 40Gvd + v qud, (12)
eo = qoqod + ququ, (13)

which satisfies the property

epley +eg? =1, (14)
and obeys the error quaternion kinematics [25]
éy =

1
5 (GUX -+ 601.3) (.:’7 (15)

1
o = —iede:. (16)
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In (15) and (16), @ € R? denotes the error in the angular velocity of the
spacecraft

L

@£ w— Rwg, (17)
where R € R3*3 is the rotation matrix used to express wq in the body coor-

dinate system, and is defined as

R2 RRT = (602 — evTev) Ts 4 2ep€s . — 2e0€, <. (18)

8.4. Aerodynamic Torques

A spacecraft in LEO experiences drag and lift forces on every surface exposed
to the incoming atmosphere particles. In the case of a DMD-equipped CubeSat,
the surface areas of the DMD are significantly larger than those of the body so
that the latter can be neglected. The drag force Fp j € R?® and the lift force
Fp; € R? are assumed to act on the geometric center of each DMD surface and

can be expressed as

pwyL;Cp 2 Vi
Fpj=—-———"—"="V.,l (19)
’ 2 Vel
and
pwy L;C 5 of Vo Ve
Fp = —PeliCLyy cmyx ) (20)
J 2 N L e LA

In (19) and (20), the subscript j indicates the ;' DMD surface, p € R is
the atmospheric density, Cp_j, Cr ;, ws, L; € R are drag and lift coefficients,
and the width and length of the corresponding DMD surface, respectively. The
spacecraft-atmosphere relative velocity vector V;. € R?, assuming that the at-

mosphere co-rotates with the Earth, is defined as
V, 2 R, — wg x Re, (21)

where wg € R? is the angular velocity of the Earth, and R.., R.eR3 represent

the ECI position and velocity of the spacecraft, respectively. The vector n; € R3
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is a unit vector that represents the direction normal to the ;™ DMD surface
and V| j £ V,n;.

Remark 2. Density models with different levels of accuracy have been de-
veloped throughout the years. The U.S Standard [26] and Harris-Priester [27]
models are altitude-based theoretical models that provide values for the atmo-
spheric density based on the spacecraft altitude at a low computational cost.
More accurate and complex models, such as the NRLMSISE-00 [28] also incor-
porate data gathered from real missions to provide atmospheric density values
dependent on the date, time, spacecraft position as well as solar and geomag-
netic indices. However, more complex density models require significantly higher
computational effort and forecasts of solar and geomagnetic activity that are af-
fected by additional uncertainties. Given the multiple sources of uncertainty
and approximations in the density models, the error is still significant even with
the most accurate ones [29].

The subsequent development is based on the analytical models for drag and
lift coefficients presented in [30] that assume flat plates in a free molecular flow

as

A

2
Cp,; & ﬁexp(—SQ sin?(0in))

| (22)
+ Smi#")(l + 25?)erf (s sin(6;,,)) + g sin2(9m)\/m

cos(bin) 1 .
Cr, = — erf(scos(6;n)) + gﬁcos(ﬁm) sin(0in )/ Tk, out /La, (23)

where erf(-) represents the error function [31], s £ |V,|[\/m/(2kgT,) € R
is an auxiliary variable, m € R is the mass of the spacecraft, kp € R is
the Boltzmann constant, 6, € R is the principal rotation angle between V..
and nj, and T, € R is the ambient atmosphere temperature. The kinetic

temperature of reflected particles at the surface T} oy: € R is defined as

m
Trout = %HVTHQ(l —a) + aTy, (24)
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where T € R is the temperature of the surface, and « € R is an accommodation
coefficient that represents the influence of the surface material properties.
The torques produced by aerodynamic drag and lift are given by
4

™2y R*Fp;, k=D,L, (25)
j=1

where R; L.+ Tj, Te e [c1 c2 03]T € R3 is the uncertain vector that goes
from the spacecraft CoM to the geometric center of the rear face of the CubeSat
(0'), and r; € R? is the vector that goes from O’ to the center of pressure of
the 4" DMD surface. Given the geometry and capabilities of the DMD, the

vector 7. also varies with the level of deployment of the drag surfaces.

3.5. Gravity Gradient Torque

The DMD-equipped CubeSat, considered a rigid body in space, experiences a
gradient of gravitational force along the body with the greatest attraction on the
parts that are closer to the Earth. This gradient produces the so-called Gravity
Gradient Torque (GGT) that depends on the attitude and inertia properties.
The GGT is given by [32]

.. o 3GMg
“CTRP

where Mg € Ry is the mass of the Earth, and G € Ry is the universal

R.*JR,, (26)

gravitational constant.

The GGT can be changed by extending/retracting the DMD surfaces which
directly affect the inertia matrix. A simple model to compute the variation of
the inertia matrix by assuming DMD surfaces that can be divided as a thick
walled cylinder (rolled portion) and a flat plate (deployed portion) [17], is used

to propagate the attitude dynamics for the numerical simulation in Section 6.

10
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4. Control Design

4.1. Control Objective

The objective is to design an adaptive controller for the spacecraft attitude to
track a given time-varying reference qq using only the influence of environmental
torques on the spacecraft attitude dynamics as described in (1). Uncertainties
associated with the average atmospheric density p and drag coeflicient Cp have
been addressed in previous work from the authors in [19]. However, assumptions
such as perfect knowledge of the inertia matrix J and the location of the CoM
r. were made to achieve the control objective along with on-line parameter
estimation. In this work, at the cost of losing the on-line parameter estimation
feature, an augmented vector is proposed to compensate for the uncertainties.

Although analytical models to compute the variation of the inertia matrix
can be developed, modeling approximations are inherent and lead to uncertain
disturbances. Moreover, modeling deviations in the CoM location will also result
in inaccurately computing levels of deployment for the DMD surfaces to produce
the torques required by a designed control law.

To achieve the proposed control objective, the subsequent control design will
be performed under the following assumptions.

Assumption 2. The spacecraft has the capability of using the computa-
tionally light Harris-Priester model [27] to calculate the atmospheric density
pup € Ry on-board. The real atmospheric density, whose behavior is more
complex than what is captured by the Harris-Priester model, is assumed to be

approximated by

p = Bi+ By pup, (27)

where Bj, Bs € R are unknown calibration constants. O
Assumption 3. The spacecraft is capable of approximately computing its

time-varying inertia matrix .J,, € R3*3, provided an on-board simplified ana-

11
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lytical model. The actual inertia matrix J can be expressed as

J = Jm + AJ, (28)

where AJ € R?*3 is the mismatch between the actual and modeled inertia
matrix. The inertia mismatch AJ, as well as its time derivative AJ, are
assumed bounded by known constants. Moreover, since the DMD surfaces are
driven by motors with limited velocity, then the rate of change of the inertia
matrix J can also be bounded by a known constant. O

Assumption 4. The desired quaternion qq, desired angular velocity wg and

its time derivative wq are known and bounded signals such that

lgall< ¢1y [lwal < G, llwall< G, (29)

where (1, (2, (3 € Ry are known bounding constants. O
Assumption 5. The spacecraft is equipped with an attitude determination
system that provides the controller with measurements of the angular velocity
w and quaternion q. O
Since the components of e satisfy (14), the attitude control objective can

be established as
R—1Ts as t — oo. (30)

Based on (12)-(14), the control objective in (30) can be achieved if

lles]]— 0 =]eg |— 1. (31)

4.2. Control Development

Let the modified state vector r € R3 be defined as
r2 o+ fey, (32)

where 3 € R3*3 is a symmetric, positive-definite control gain matrix. Taking

the time derivative of r and pre-multiplying by the inertia matrix J yields

3G Mg

TR RXJRo4+8—Jw—w*Jw—JRwg—J Risg+JBéy. (33)

Jr =T1p+7r+

12
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Using (15), (17), Assumption 3 and the fact that R = —w* R yields

J# =f+ N + Ng, (34)

where f, N , Np € R? are auxiliary variables defined as

a 3GMg | .
f_TD+TL+ch Jch_me (35)

— WX Jpw + Jpw* Rwg — Jm Risg + Jm B,
— . ~ ~ X
N2 _AJo—a*AJ (a, + Rwd) _ (Rwd) AJ&
- 1
+ AJ(:}XR(JJd + iAjﬂ (GUX + 60.’[3) (:J,

3GMs
[ Re|®

.~ ~ X ~ ~
Np 2 —AJRwq — (Rwd) AJRwq + RAJR.+6 — AJRwq. (37)

Since @ = r — fe,, and considering that || R.|| can be upper bounded by
a known constant. Using Assumptions 3 and 4, N and N B can be upper

bounded as

1N < o (lnl) [, (38)

INB| < (4, (39)

where (4 € Rsg is a known bounding constant, 7 € RS is an augmented state
vector defined as

L

n2 e, 7", (40)

and o: RS — Ris a positive, globally invertible and non-decreasing function.

To include the adaptation capabilities that compensate for the unknown
parameters, the term f that contains only measurable states and the modeled
inertia matrix J,,, can be linearly parameterized with respect to the unknown

parameters. First, consider the contribution of the j* DMD surface to the

13
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force due to the aerodynamic drag and lift Far,; € R3 which can be expressed

using Assumption 2 as

Far; 2Y;0;, j=1,234. (41)

In (41) Y; € R3** are measurable regression matrices defined as

Y; 2
Ljwy |V Liyw||[V Ll [ Ve |4
-, Vell pup| — : X nj X ——— | [1 pup]
2||Ve || 2 |Vl A
(42)
and the vectors ©; € R* are
R T
0; = |:B1CD,j ByCp; BiCL; BaCrj| - (43)

Therefore, the total aerodynamic torque Tar,; € R3 due to the aerodynamic
drag and lift in (25) can be rewritten as

4
Tar E7p 7L =X Y (Y;0,)+ Y (17Y;0;) (44)

Jj=1 Jj=1

NE

In (44), the first term can be expressed as

4 Oix16 Yr(3) Y. (2)| |Orc
e Z (Y;0;) = |-Y,(3) O1x16 Yi(1) O,c | (45)
= Y.(2) —=Y.(1) Oixis | |Orcs

where Y, € R3*16 is a measurable regression matrix defined as
Y, 2 [Y1 Yo Y3 Yy, (46)

and Y, (k) denotes the k'™ row of Y,. Similarly, the vector of uncertain

parameters @, € R16 is defined as

T
0.2 |0,” 8," 0," ©,"] . (47)

14
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The second term in (44) can be expressed as

4 YiB)rj2 —Y;(2)r)3
> (r7Yi05) =3 | |Vi(Urss = i) | ©5 | (48)
= @i - Vi
where 7; £ [rj1 ;2 7;3]7 is the vector defined in (25), and Y;(k) denotes the

k™ row of Y;. Substituting (45) and (48) into (44) yields

TaT = YarO AT, (49)

where Y7 € R3*64 is a measurable regression matrix and @47 € R% is a

vector of uncertain parameters, and are defined as

Yar =
Oix16  Yr(3) -Y.(2) YiQ)rie—Yi(2)riz -+ Ya(3)rae —Ya(2)ras
-Y.(3) Oixi6 Y.(1) Yi()rizs—Yi(3)rin - Ya(D)ras—Yi(3)rai|
Y.(2) -=Y.(1) Oixi6 Yi(2)ri1—Yi(D)rio -+ Yi(2)ra1 —Ya(D)rao
(50)
Oar=|0,7c; ©,7c; ©.7¢; ©,7|", (51)
respectively. Therefore, (35) can be rewritten as
f=Yeo, (52)

where Y £ [YAT i’%ﬁﬁ RYJnRe — Jpw — w* Jpw + o Rwg — JymRog +
Jmﬁév} € R3*65 is the measurable augmented regression matrix, and @ =
[@ ar’ 1]T € R% is the augmented vector of uncertain parameters.
Assumption 6. The time-varying vector of uncertain parameters © and its
time derivative, i.e., @, are bounded by known constants. The bounds for @

are given by

©
IN
@
IN
o

(53)
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where ©, © € R% are constant vectors containing the lower and upper bounds
of ©, respectively. O

Define the estimation error ® € R% as

©=0-0, (54)

where © € R% is the estimate of ©. Using (52) and (54), and adding and
subtracting the term Y® to the open-loop error system in (34) yields

JF=Y®+Y®O + N + Npg. (55)

The regression matrix Y contains measurable states and is influenced by the
actual inputs (i.e., the DMD surfaces lengths Ly, Lo, L3, L4), while the update
law for the estimated vector © will be subsequently designed. Therefore, the
measurable product Y © can be altered by modulating the length of the DMD

surfaces. This term is designated as the auxiliary control input @ € R3

YO 2 a. (56)

To facilitate the subsequent stability analysis, let the desired auxiliary control

signal g € R? be designed as
g £ —Kir — prey, (57)

where 31 € Ry is a positive constant gain, and K; € R3*3 is a constant,
positive-definite control gain matrix. Adding and subtracting #g and substi-

tuting (56) and (57) into (55) yields the closed-loop error system
Ji=YO+ N+ Ng+x — Kir — Bie,, (58)

where x £ @ — 1ig € R? represents the mismatch between the desired and the
actual auxiliary control inputs. Based on (58), the gradient-based adaptation
law is designed as

© £ proj(TYTr), (59)

16
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where T' € R%*65 is a constant, positive-definite adaptation gain matrix, and
proj(-) denotes the continuous projection algorithm presented in [33]. Based on
the value of (-) and the known bounds of ©, the design in 8 cnsures & remains
within the known bounded region without altering the stability of the system

nor introducing undesired discontinuities.

5. Stability Analysis

To facilitate the stability analysis, some definitions are introduced. Let
A1, A2, Az, Ay € Rog be defined as A\; 2 A\pin{K1} — (5 — 1, A2 = Bidmin{B),
A3 £ min (A, A2), and g £ A3 — M, respectively, where /3 is the control
gain defined in (32), Kj, S are the control gains used in (57), o (||n]) is
the function defined in (38), (5 € Rs( is a known bounding constant, and
Amin{-} € R is the minimum eigenvalue of {-}. Let the set D be defined as
D2 {77 ’ Inl|< ot (\/E)}, and let S C D be defined as

se{ne||nl<a}. (60)
a JA( 2 (¢ 3 =
where A = \/j (J 1 (\/2)\3)) — x5 and A, A ¢, ¢ € Ryp are known

bounding constants.

Theorem. Consider the spacecraft attitude dynamics governed by the non-
linear system in (1) with Assumptions 1-5. The auxiliary controller in (57) and
the adaptive update law in (59) ensure uniformly ultimately bounded attitude

tracking in the sense that

lles]| < erexp {—eat} + e, (61)

= > — — 77
where ¢, = w € Rug, & = % € Rso, e = ﬁ(s‘i‘% €

R.o, (s 2 C6+% € R, and (g, (7 € Ry are known bounding constants.
Provided that n(0) € S is satisfied, and that the control gains are selected
sufficiently large such that A; > 0, and A > e3.

Proof. Let V € R>q be a candidate Lyapunov function defined as

1
—rTJr 4 BreyTe, + B1(1 — e0)? +

V() = 3

17
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The Lypaunov function can be upper and lower bounded as

AlnlP+¢ < V(#) < Xnl*+<. (63)

Substituting (15), (16), (32), (54) and (58) into the time derivative of (62), and

T

using the fact that e,” e, & = 0, yields

. ~ —~ 1 .
V(t) =T (Y@ +N+Np+x-— Klr) +5rTr .

T o5 10 o' r-1G (6
— Bre,TBe, +© IO -6 IO,

Substituting the adaptive update law in (59) into (64), yields
. —~ 1 . ~T .
Vit)=r'N+r"Ng+rTx —rTKir —Bie,” Be, + §TTJ’I‘ +© I''e. (65)

In (64), the last two terms can be upper bounded using Assumptions 3 and 6

as

1 .
irTJr < §5||r||2, (66)

O T 16 < (. (67)

Using (38), (39), (66) and (67), (65) can be upper bounded as

V(t) < = Qumin{K1} = G) [Ir]® (68)
= Bidmin{BYlew|* + o ((lmDllnllllr I+ Ca + lxID) 7+

Assumption 7. A numerical optimization algorithm can be used to find a
suitable set of DMD surface lengths (i.e., L1, Lo, L3 and L,4) that minimizes
lIx||, and the resulting x can be upper bounded by a constant for the entire
maneuver such that ||x||< (7. O

Using Young’s inequality on the term o ([|n|]){|n|l[|7|| yields o({[n]){|nll|r(|<
w +2||7[[%. Similarly, the inequality (Ca + [|x]) [|7]|< %HTHQJFW
can be obtained using Assumption 7. Therefore, (68) can be rewritten as

a?([[nlDnl?

V() < =Aillr P =Delles|*+ 5

+ Cg- (69)

18
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The expression in (69) can be further upper bounded as

Vo) < - (30— T g, (70)

Provided m € D, then (70) can be rewritten as
V() < =Millnl*+¢s ¥n € D. (71)
Using the bounds in (63), (71) can be rewritten as

V(t) < _L;V(t) teo, (72)

where € £ (g + %E By invoking the Comparison Lemma from [34], the

solution to (72) can be obtained as

V) < exp{);lt} V(0) + ;460 (1 exp{/\;t}>. (73)
Using (63) and (73) yields

M)+ A X ¢
Iml< ("7(0;”“) exp{—;t} ¥ (mcs n Cf) R

Using (40) and (74) yields the uniformly ultimately bounded result in (61)
provided n(0) € S, where uniformity in initial time can be concluded from the
independence of A3 and the ultimate bound from e3 at time ¢ = 0. From (62),
(63) and (73), then r € L. Then, from (17) and (32), w € L. Similarly,
from (15) and (16), é,, ég € Loo. Since 7, w € Lo, and e, ey, wg € Lo
by definition, then @4 € Lo by (57). Since O c Lo by (59), tig € Lo, and
X € Loo by Assumption 7, therefore Y € L., using (56). |

6. Simulation Results

The simulations presented in this section are performed using the 4th order
Runge-Kutta fixed-step algorithm to propagate the orbital and attitude dy-
namics. The first simulation, in Subsection 6.1, illustrates the performance of

the controller when required to achieve a fixed orientation relative to the orbital
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frame (regulation maneuver). The second simulation, in Subsection 6.2, presents
the result obtained using the controller to track a time-varying reference rela-
tive to the orbital frame (tracking maneuver). Effects of aerodynamic drag and
lift, gravity gradient torque and Js perturbation are included in the spacecraft
dynamics. The NRLMSISE-00 atmospheric model is used as the true (unknown
for the controller) atmospheric density. The control law in (57) is computed ev-
ery 30 seconds to allow finding a suitable set of DMD surfaces lengths through
the formulation of a constrained function minimization problem that minimizes
lIx|l, and includes the physical length constraints of the DMD surfaces. The
MATLAB fmincon command is used to solve the minimization problem

in  [[Y® - ag| subj {<L-<. i =1,2,3,4.
Ll.,LI?.,ang,mH ® — Ug|| subject to 0 < L; <3.7, j , 2,3, (75)

The spacecraft is simulated in a circular orbit with inclination of 51.94
degrees and 400 km altitude, similar to that of the International Space Station
(ISS). The initial orbital elements and spacecraft parameters are presented in
Tables 1 and 2, respectively. Additionally, the simulations also incorporate
modeling inaccuracies in the CoM location and inertia matrix. For visualization
purposes, in the subsequent simulation results, the orientation of the body with
respect to the orbital frame is expressed using a 3-2-1 Euler angle sequence,
where ¢, 6 and 1 denote the roll, pitch and yaw angles, respectively (see [17]
for details). The roll, pitch and yaw angles correspond to rotations about 51, b
and bg, respectively. Simulation parameters, initial conditions and uncertainties
are the same for both simulation examples. The initial conditions (¢, 6o, %0)

are presented in Table 3.
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Parameter Value

Semi-Major Axis [m] 6778 x 10°

Eccentricity 0
Inclination [deg] 51.94
RAAN [deg] 206.26

Arg. of Perigee [deg] 101.07
True Anomaly [deg]  108.08

Table 1: Initial orbital parameters for simulation of regulation and tracking maneuvers.

Parameter Value
CubeSat Body Mass [kg] 3

DMD Surface Mass [kg] 9 x 1072
Max. DMD Surface Length [m] 3.7

DMD Surface Width [m] 3.8 x 1072

Table 2: Spacecraft parameters for simulation of regulation and tracking maneuvers.

Parameter  Value

o [deg] 45
0o [deg] —60
Yo [deg] 50

do [deg/s] 5 x 1072
0o [deg/s] —7.5 %1072
Yo [deg/s] 6 x 1072

Table 3: Initial Euler angles and angle rates for simulation of regulation and tracking

maneuvers.
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6.1. Regulation Maneuver

To propagate the spacecraft dynamics, a model to compute the inertia ma-
trix J, as function of the DMD-surfaces lengths is used. Specifically, J,, is
computed by representing a 2U CubeSat structure as a rectangular box, and the
rolled and deployed portions of a DMD-surface are modeled as a thick walled
cylinder and a flat plate, respectively. The inaccuracy of J,, is introduced by
incorporating deviations in the mass for each part of the spacecraft and the

assumed locations of their individual CoMs are shown in Table 4.

Parameter Real (for J) Approx. (for Jy,)
CoM CubeSat Body [cm] [000]T [1.82 — 3|7

CoM Flat Plate (x1072) [m] [0 0 0]7 [4.5L% 0 0]T
Deployer mass [g] 89.88 75

Table 4: Uncertainties included in simulation to compute J,,. CoMs expressed in
coordinate systems centered at the geometric center of the body of interest, where

i=1,2, 3, 4.

The objective for this maneuver is to achieve a fixed orientation of the space-
craft with respect to the orbital frame. The controller parameters are shown in
Table 5, and the desired Euler angles are presented in Table 6. Figures 3 and
4 show the resulting quaternion error components and the corresponding trans-
formation to Euler angles for a 10 hour simulation, respectively. The results
show that the regulation objective was achieved with ultimate bounds for roll,
pitch and yaw within +3, +2 and +2.2 degrees, respectively.

As concluded in the stability analysis, the resulting ultimate bound can be
attributed to the size of the disturbance torques in 4, the residual error x, the
unmodeled effects of the DMD on the inertia matrix, and the rate of change
of the uncertain parameters (i.e., @) Therefore, efforts on improving the
knowledge of the inertia matrix, using a good numerical algorithm to solve for
the lengths and avoiding high deployment rates, would have direct influence on

reducing the ultimate bounds.
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The levels of deployment for the DMD surfaces are shown in Figure 5. Ac-
tuator saturation was applied to account for the physical limits of the DMD
surfaces. Although this saturation was not explicitly modeled in the controller
design, the controller has shown to be robust enough to regulate the orienta-
tion despite the physical actuator limits. In an effort to reduce the influence
of rapid variations of the control inputs, a low-pass filter with cutoff frequency
we £ 0.017 Hz has been applied to the lengths calculated by the fmincon al-
gorithm and the maximum deployment rate among all DMD surfaces for this
maneuver was 2.9 meters per minute. The norm of the resulting mismatch
between @ and ugq (i.e., |[x]|) is shown in Figure 6. Due to the amplitude
limitations of the environmental torques, the actuators reached their saturation
limits multiple times during approximately the first five hours of the maneuver.
However, after the period of saturation, [|x| remained below 1 x 107% Nm.

The estimated parameters in © are shown in Figures 7 and 8 for the pa-
rameters associated with the aerodynamic drag and in Figures 9 and 10 for
the parameters associated with the aerodynamic lift. The estimations are di-
vided into four plots to better observe their variation over time because of their
different orders of magnitude. From the stability analysis, it cannot be con-
cluded that the estimation error © converges to zero, meaning that there is
no on-line parameter estimation. However, the results show that all parame-
ters are dynamically adjusted to compensate for the environmental and physical

uncertainties and remain bounded.

23



Parameter Value

K (x1073)  diag(3,3,3)

B (x107%) diag(1.5,5,5)

B (x1076) 3.2

r diag (T'2,T', T2, ', 612, 6I'5, 'y, T'y, 10720)
Iy (x107%)  diag (1,10, 1,10, 1,10, 1,10M)

[y (x10722)  diag (2,2'1,2,2!1, 2,211 2, 211)

Table 5: Controller parameters used for simulation of regulation and tracking maneu-

vers.

ba [deg]  0q [deg]  ta [deg]
45 0 10

Table 6: Desired orientation of the spacecraft with respect to the orbital frame for the

regulation maneuver.

Magnitude

0 2 4 6 8 10
Time [h]

Figure 3: Resulting error quaternion for the regulation maneuver using the designed

controller.
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Figure 4: Resulting Euler angles for the regulation maneuver using the designed con-

troller.
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N
o

Boom Lengths [m]
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o
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0 2 4 6 8 10
Time [h]

Figure 5: Required level of deployment for the DMD surfaces using the designed con-

troller for the regulation maneuver.
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Time [h]

Figure 6: Resulting mismatch ||x|| obtained using MATLAB fmincon to solve for the

DMD surfaces lengths for the regulation maneuver.

%1072

0.5]\
0

Time [h]

Figure 7: Resulting parameter estimates ElépJ in © with 7 = 1,2,3,4 associated

with the aerodynamic drag for the regulation maneuver using the designed controller.
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Time [h]

Figure 8: Resulting parameter estimates [61§16D,j, 611_%65,]-, égﬁlap,j, ézégap,j,
~ ~ ~ 1T
¢3B1Cp.j, éngCD,j] in ® with j = 1,2, 3,4 associated with the aerodynamic drag

for the regulation maneuver using the designed controller.

1073

15/
" fp—m———

@ 0.5}

0 2 4 6 8 10
Time [h]

Figure 9: Resulting parameter estimates EléL,j in © with J =1,2,3,4 associated

with the aerodynamic lift for the regulation maneuver using the designed controller.
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340

345

Time [h]

Figure 10: Resulting parameter estimates [éléléL,j, é1§25L,j, égélaL,j, 62§26L,j,
~ ~ ~ 1T
¢3B1CL,j, éngCL,j] in ® with j = 1,2, 3,4 associated with the aerodynamic lift

for the regulation maneuver using the designed controller.

For the specific spacecraft and orbit considered in the regulation example,
a feasible range of operation including saturation of the control inputs is deter-
mined by performing a set of 1000 five-hour simulations of regulation maneuvers.
The initial conditions and the desired Euler angles are randomly initialized as
shown in Table 7. The set of possible desired Euler angles has been selected so
that the operational range for a more demanding mission as compared to the
previous example is considered (e.g., pointing a camera on the ram/anti-ram
face of the spacecraft to a given objective).

To point the by body axis towards any direction inside a cone of limited
size with respect to the along-track direction 64, it is sufficient to vary the
desired roll and yaw angles. The size of the cone is driven by the bounds of
the yaw angle and all directions inside the cone are explored by varying the roll
angle. For all simulations, the spacecraft is considered stabilized if |le,||< 0.4
(user-defined) on average during the last 20 minutes of the maneuver, which
was found representative for successful maneuvers considering the ultimately

bounded result from the stability analysis. Figure 11 presents the percentage of
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stabilized maneuvers with different limits for the norm of the yaw angle |||

(i-e., cone sizes). Figure 12 illustrates the difference in size between cones result-

ing from yaw bounds of +8 and +25 degrees, with percentages of success of 80%

and 70%, respectively. The remaining percentage of failure can be attributed

to several factors including the limitations due to the DMD geometry, initial

conditions, and variations of atmospheric density, among others.

Parameter Range

oo, 6o, 1o [deg] [—10, 10]
o, 6o, o [deg/s]  [~0.02,0.02]
¢a [deg] [—180, 180]
04 [deg] 0

g [deg] [—25, 25]

Table 7: Parameter ranges for the set of 1000 five-hour simulations.

Success [%]

100

95+

90 ¢

857

80|

75}

70}

65

0 5 10 15 20 25
11l [deg]

Figure 11: Resulting percentage of successful regulation maneuvers vs. size of the cone.
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Figure 12: Resulting feasible range of operation, 8 degrees (80%), 25 degrees (70%).

6.2. Tracking Maneuver

The simulation presented in this subsection illustrates a scenario where the
CubeSat is required to change its orientation with respect to the orbital frame
over time. This task could be required for missions where the spacecraft needs
to adjust its orientation for pointing a sensor (e.g., a camera) towards different
areas during the mission. The scenario considers a spacecraft that is required
to track a desired trajectory of the roll angle while keeping the pitch and yaw
angles fixed. The initial conditions and control parameters are the same used
for the regulation maneuver, and the desired Euler angles are presented in Table
8.

Figures 13 and 14 show the resulting quaternion error components and the
corresponding transformation to Euler angles for a 10 hour simulation. These
results show that the CubeSat orientation reaches the ultimate bound in approx-
imately 5 hours. The ultimate bounds for roll, pitch and yaw are +3, +1.5
and =3 degrees, respectively.

The resulting lengths of the DMD are shown in Figure 15, where satura-
tion to account for the physical constraints was applied. The DMD surfaces

reached their saturation levels multiple times during the first two hours of the
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simulation, and the controller has shown to be robust during that portion of
the maneuver. The maximum deployment rate among all DMD surfaces for the
tracking maneuver was 2.6 meters per minute. Figure 16 shows the norm of
the mismatch between @ and g4 (i-e., || x||), after the period of saturation, it
remained below 8.9 x 10~7 Nm.

The estimated parameters in © are shown in Figures 17 and 18 for pa-
rameters associated with the aerodynamic drag and in Figures 19 and 20 for
those associated with the aerodynamic lift. All the estimations remain bounded
and are dynamically adjusted to compensate for the uncertainties but on-line

estimation cannot be guaranteed.

$a |deg] 04 [deg]  a [deg]
35 + 15sin(4.36 x 107%¢) 0 0

Table 8: Desired orientation of the spacecraft with respect to the orbital frame for the

tracking maneuver.

e ©
> o

Magnitude
o
()

0 2 4 6 8 10
Time [h]

Figure 13: Resulting error quaternion for the tracking maneuver using the designed

controller.
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Figure 14: Resulting Euler angles for the tracking maneuver using the designed con-

troller.
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Figure 15: Required level of deployment for the DMD surfaces using the designed

controller for the tracking maneuver.
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Figure 16: Resulting mismatch ||x|| obtained using MATLAB fmincon to solve for the

DMD surfaces lengths for the tracking maneuver.

%1072

0.5

0 2 4 6 8 10
Time [h]

Figure 17: Resulting parameter estimates §16D7j in © with j =1,2,3,4 associated

with the aerodynamic drag for the tracking maneuver using the designed controller.
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Time [h]

Figure 18: Resulting parameter estimates [61§16D,j, &1B:Cp,j, @BiCh,;,
~ ~ “ o~ 1T A
¢2B2Cp,;, ¢3B1Cpj, éngC’D,j] in ® with j = 1,2, 3,4 associated with the aero-

dynamic drag for the tracking maneuver using the designed controller.

-13
1510

0 2 4 6 8 10
Time [h]

Figure 19: Resulting parameter estimates E@L,j in © with 7 =1,2,3,4 associated

with the aerodynamic lift for the tracking maneuver using the designed controller.
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Figure 20: Resulting parameter estimates [éléléL,j, é1§25L,j, égélaL,j, 62§26L,j,
~ ~ ~ 1T
¢3B1CL,j, éngCL,j] in ® with j = 1,2, 3,4 associated with the aerodynamic lift

for the tracking maneuver using the designed controller.

To illustrate the approach taken to evaluate the effect that the applied
torques may have on the long DMD surfaces, a comparison between the fre-
quency content of the applied torque and the first natural frequencies of a DMD
surface was performed for the tracking maneuver. A fully deployed DMD sur-
face was modeled as a cantilevered beam and the first natural frequencies were
computed using SolidWorks. Figure 21 illustrates the first five mode shapes and
their corresponding frequencies, and Figure 22 shows the Fast Fourier Trans-
form (FFT) of each component of the applied torque. From these figures, the
range of frequencies of the applied torques is reasonably below the first natural

frequency of the DMD surface (i.e., 0.1396 Hz).
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Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
0.1396 Hz 0.1624 Hz 0.2310Hz 0.4040 Hz 0.6597 Hz
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/
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Figure 21: First natural frequencies of a fully deployed DMD surface.
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Figure 22: FFT of the torque Y© applied during the tracking maneuver.

7. Conclusion

This paper presented the design and validation through numerical simula-

tion of an adaptive controller for environmental torques-based attitude control
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that compensates for uncertainties in the atmospheric density, drag and lift co-
efficients, and center of mass location. Moreover, the controller also considers
perturbations associated with the non-modeled behavior of the inertia matrix.
The obtained result ensures the alignment of the body and orbital frames within
ultimate bounds. Simulation results including aerodynamic and gravity gradi-
ent torques, actuator saturation, as well as the NRLMSISE-00 model for atmo-
spheric density and Jy perturbation, were performed to validate regulation and
tracking of the angles to their desired values relative to the orbital frame within
bounds of 43 deg. Therefore, the controller shows potential for applications
where the location of the center of mass, atmospheric density, drag coefficients
are uncertain and the inertia matrix cannot be accurately computed in real time.
Future work on this problem will consider strategies to address implementation

challenges such as failures to deploy a DMD surface.
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Abstract

In this paper, the problem of controlling the attitude of a CubeSat in low
Earth orbit using only the environmental torques is considered. The CubeSat
is equipped with a Drag Maneuvering Device (DMD) that enables the space-
craft to modulate its experienced aerodynamic and gravity gradient torques.
An adaptive controller is designed to achieve attitude tracking of the space-
craft in the presence of uncertain parameters such as the atmospheric density,
drag and lift coefficients, and the time-varying location of the Center of Mass
(CoM). The proposed controller also accounts for modeling inaccuracy of the
inertia matrix of the spacecraft. A Lyapunov-based analysis is used to prove
that the quaternion-based attitude trajectory tracking error is uniformly ulti-
mately bounded. The designed controller is also examined through numerical
simulations for a spacecraft with time-varying uncertain drag, lift coefficients
and CoM location parameters and the NRLMSISE-00 model for the atmospheric
density.

Keywords: Aerodynamic Torque, Gravity Gradient Torque, Atmospheric
Density, Drag, Lift, Center of Mass, Adaptive.

*Corresponding author
Email address: crianorios@ufl.edu (Camilo Riano-Rios)

Preprint submitted to Acta Astronautica December 12, 2020



20

25

30

1. Introduction

Missions involving small satellites in Low Earth Orbit (LEO) have become
popular with the introduction of the CubeSat standard [1]. The limited volume
available in these satellites has increased the need to develop propellant-less
strategies for orbit and attitude control, usually exploiting the interaction of
the spacecraft with the low density atmosphere [2-6]. The idea of using the
drag force for relative orbit maneuvers was first introduced in [7]. Since then, a
wide variety of control strategies have been developed using both aerodynamic
lift and drag as the only control means [8-11]. To exploit such forces, dedicated
surfaces are installed on the spacecraft to increase its area-to-mass ratio, often
locating the center of pressure at distances with respect to the Center of Mass
(CoM) such that significant torques can be applied. This has led to the design
of CubeSats that can alter the aerodynamic torques by actively modulating
the length and angle of drag surfaces. Such designs often involve several ultra-
lightweight surfaces with two or more degrees of freedom [3, 4] so that the inertia
matrix does not change significantly and its time derivative can be neglected in
the attitude equations of motion.

The University of Florida ADvanced Autonomous MUltiple Spacecraft labo-
ratory (ADAMUS) has designed the Drag Maneuvering Device (DMD), formerly
Drag De-Orbit Device (D3) [12], and has been studying its capabilities for space-
craft controlled re-entry [13, 14], spacecraft relative maneuvering [15, 16] and
attitude control [17-19] by using its four dedicated surfaces to modulate the
experienced environmental forces and torques on a CubeSat. The design of the
DMD provides a CubeSat with four repeatedly extendable/retractable surfaces
offset 90 degrees from each other, and with 20 degrees inclination with respect
to the anti-ram face of the CubeSat. The DMD has passed through several pro-
totype iterations, and incorporates only one degree of freedom for each surface,
which makes it easier to build and less susceptible to failure of moving parts.
It is also capable of altering the CubeSat inertia matrix to make use of the

aerodynamic and the gravity gradient torques.
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Previous work in [19] presented the design of an integral concurrent learning-
based control method to provide simultaneous state tracking and on-line estima-
tion of uncertain parameters. These uncertain parameters included the average
drag coefficient and atmospheric density, and the time-varying CoM location
and inertia matrix were assumed known. However, in real operation, inaccurate
knowledge of these two parameters could reduce the performance or even desta-
bilize the system. Controllers that actively change the location of the CoM have
been proposed for spacecraft attitude control in [20] using PID, linear quadratic
regulator and partial feedback linearization techniques, and the developed con-
trol laws computed the location of the CoM so that the desired control torques
can be produced. The results in [20] demonstrate how the CoM location can
influence the overall performance of the system, making it necessary to account
for uncertainties in this parameter. The problem of having uncertainties in the
CoM location has been addressed in [21] for unmanned aerial vehicles using
an adaptive controller for constant CoM. In [22], adaptive control techniques
have been used to develop a propellant-based spacecraft attitude controller that
considers time-dependent or input-dependent inertia parameters to account for
deployable appendages or mass loss, respectively.

In this paper, the designed controller incorporates uncertainties in the CoM
location and time-varying drag and lift coefficients, as well as partial knowledge
of the inertia matrix of a DMD-equipped CubeSat. The cost for adding this
adaptation capability is that the on-line parameter estimation feature is lost
compared to [19]. However, the proposed controller provides improved robust-
ness to uncertainties in parameters that are inaccurate and time-varying. The
contribution of this paper is the design of an adaptive controller that exploits
environmental torques for spacecraft attitude maneuvers in the presence of un-
certainties in the time-varying CoM location, atmospheric density, drag and lift
coefficients with guaranteed bounded state tracking through a Lyapunov-based
stability analysis.

The remainder of this paper is organized as follows. Section 2 describes the

DMD device, and Section 3 presents the spacecraft attitude dynamics. Section
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4 describes the control objective and the control development. Section 5 shows
the corresponding Lyapunov-based stability analysis. Sections 6 and 7 present

the numerical simulation and conclusion, respectively.

2. Drag Maneuvering Device

In this paper, the controller design is based on the DMD developed in [12].
It consists of four repeatedly extendable/retractable 3.7 m long and 0.038 m
width surfaces offset 90 deg and inclined 20 deg with respect to the anti-ram

face of the spacecraft, as depicted in Figure 1.

ram
direction

Figure 1: Drag Maneuvering Device schematic.

The surfaces are fabricated from strips of austenitic 316 stainless steel shim
stock with 0.0762 mm thickness, weighting approximately 95 g. Given the
weight of each boom and their lengths, significant changes in aerodynamic and
gravity gradient torques can be created by independently modulating the length
of each DMD surface. When the surfaces are fully extended, the DMD provides

an increase of the cross-wind surface area up to 0.5 m?.

3. Attitude Dynamics

3.1. Reference Frames

The Earth-Centered-Inertial (ECI) reference frame is considered the inertial

reference frame. The orbital coordinate system is defined as: origin located
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at the CoM of the spacecraft. The unit vector 63 points from the center
of the Earth towards the spacecraft CoM, the unit vector 64 is aligned with
the orbit angular momentum, and the unit vector 67 completes a right-hand
Cartesian coordinate system. The body coordinate system is defined with the
origin located at the CoM of the spacecraft, and the unit vectors 51, by and
bs aligned with the longitudinal, lateral, and vertical axes of the spacecraft,
respectively, as depicted in Figure 2.

DS1

DS 4
A~ _.--Orbit
05 -
by
01, DS 2
/" DS 3
' Z

g— Y
X Earth

Figure 2: Coordinate systems.

3.2. Equation of Motion

The spacecraft attitude dynamics are given by

jw+JGJ+wXJw=TD+TL+TGG+57 (1)

where w € R3 is the angular velocity of the body with respect to the inertial
reference frame, J € R3*3 is the inertia matrix of the spacecraft, Tag € R3
is the gravity gradient torque, and Tp, 7 € R? are the aerodynamic torques
due to drag and lift, respectively. The vector & € R? denotes disturbances to

the system (e.g., magnetic torques). The skew symmetric matrix a* € R3*3



for a vector a £ [a; az az]’ € R? is defined as

0 —as as
a*Ela; 0 —a- (2)
—ao ay 0

Remark 1. The design of the DMD considers surfaces made of austenitic
o stainless steel, which is considered a non-magnetic material [12]. Therefore, the
DMD surfaces are not expected to generate magnetic hysteresis torques. An
estimate of the maximum remaining magnetic moment of the spacecraft can be
computed following the procedure in [23] under the guidelines in [24] for a class

IT spacecraft.
o5 Assumption 1. The disturbance torque 9 can be upper bounded as ||8]|< ¢,

where (o € Rs¢ is a known bounding constant. O

3.8. Quaternion Representation of the Spacecraft Orientation

The quaternion g € R* represents the rotation of the spacecraft body with

respect to an inertial frame, expressed in the body coordinate system as [25]

a2 [0 @], (3)

wo  where go € Rand ¢, = [¢1 ¢2 ¢3]7 € R?. The quaternion q has the property

Qv qv + 9% = 1. (4)

The rotational kinematics of the spacecraft is defined as

. 1

Go = 5 (g + qoZ3) w (5)
. 1

do = ,iquw’ (6)

where T3 € R3*3 denotes the identity matrix. To specify a desired time-varying
attitude trajectory, we also define a desired quaternion gq € R* as
}T

; (7)

qqa = [qu qudT
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where qog € R and g,q € R3. Using (5) and (6), the angular velocity w can

be expressed in terms of q as

w=2 (QOQv - QUQO) - 2(]1>;<‘jva (8)
and the desired angular velocity of the body wg with respect to the inertial

frame can be expressed in the desired body coordinate system as

wa = 2 (qoddvd — Gvadod) — 2qvd” Gua- 9)

For simplicity, the attitude dynamics will be expressed in the body coordi-
nate system in the subsequent stability analysis. Therefore, it is useful to define
the matrices that represent the actual and desired orientation of the body with
respect to the inertial frame, which are denoted by R € SO(3) and Ry € SO(3),

respectively, as [25]

R2 (¢§— v qv) I3 + 2qvqu” — 2000, (10)
Ra 2 (¢6y — Qvd” Gva) T3 + 2qvaqud’ — 2004qva (11)
7]

The error quaternion e £ [eg e,7]7 € R* that represents the mismatch between

q and gqq is defined as

€y = q0agv — 40Gvd + v qud, (12)
eo = qoqod + ququ, (13)

which satisfies the property

epley +eg? =1, (14)
and obeys the error quaternion kinematics [25]
éy =

1
5 (GUX -+ 601.3) (.:’, (15)

1
o = —iede:. (16)
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In (15) and (16), @ € R? denotes the error in the angular velocity of the
spacecraft

L

@£ w— Rwg, (17)
where R € R3*3 is the rotation matrix used to express wq in the body coor-

dinate system, and is defined as

R2 RRT = (602 — evTev) Ts 4 2ep€s . — 2e0€, <. (18)

8.4. Aerodynamic Torques

A spacecraft in LEO experiences drag and lift forces on every surface exposed
to the incoming atmosphere particles. In the case of a DMD-equipped CubeSat,
the surface areas of the DMD are significantly larger than those of the body so
that the latter can be neglected. The drag force Fp j € R?® and the lift force
Fp; € R? are assumed to act on the geometric center of each DMD surface and

can be expressed as

pwyL;Cp 2 Vi
Fpj=—-———"—>[V.l (19)
’ 2 A
and
pwpL;Cp, ; of Vr Vr
Fp = - PorliCrs iy wmyx Y (20)
J 2 RN L2 e A

In (19) and (20), the subscript j indicates the ;' DMD surface, p € R is
the atmospheric density, Cp_j, Cr ;, ws, L; € R are drag and lift coefficients,
and the width and length of the corresponding DMD surface, respectively. The
spacecraft-atmosphere relative velocity vector V;. € R?, assuming that the at-

mosphere co-rotates with the Earth, is defined as
V, 2 R, — wg x Re, (21)

where wg € R? is the angular velocity of the Earth, and R.., R.eR3 represent

the ECI position and velocity of the spacecraft, respectively. The vector n; € R3
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is a unit vector that represents the direction normal to the ;™ DMD surface
and V| j £ V,n;.

Remark 2. Density models with different levels of accuracy have been de-
veloped throughout the years. The U.S Standard [26] and Harris-Priester [27]
models are altitude-based theoretical models that provide values for the atmo-
spheric density based on the spacecraft altitude at a low computational cost.
More accurate and complex models, such as the NRLMSISE-00 [28] also incor-
porate data gathered from real missions to provide atmospheric density values
dependent on the date, time, spacecraft position as well as solar and geomag-
netic indices. However, more complex density models require significantly higher
computational effort and forecasts of solar and geomagnetic activity that are af-
fected by additional uncertainties. Given the multiple sources of uncertainty
and approximations in the density models, the error is still significant even with
the most accurate ones [29].

The subsequent development is based on the analytical models for drag and
lift coefficients presented in [30] that assume flat plates in a free molecular flow

as

A

2
Cp,; & ﬁexp(—SQ sin?(0in))

| (22)
+ Smi#")(l + 25?)erf (s sin(6;,,)) + g sin2(9m)\/m

cos(bin) 1 .
Cr, = — erf(scos(6;n)) + gﬁcos(ﬁm) sin(0in )/ Tk, out /La, (23)

where erf(-) represents the error function [31], s £ |V,|[\/m/(2kgT,) € R
is an auxiliary variable, m € R is the mass of the spacecraft, kp € R is
the Boltzmann constant, 6, € R is the principal rotation angle between V..
and nj, and T, € R is the ambient atmosphere temperature. The kinetic

temperature of reflected particles at the surface T} oy: € R is defined as

m
Trout = %HVTHQ(l —a) + aTy, (24)
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where T € R is the temperature of the surface, and « € R is an accommodation
coefficient that represents the influence of the surface material properties.
The torques produced by aerodynamic drag and lift are given by
4

™2y R*Fp;, k=D,L, (25)
j=1

where R; L.+ Tj, Te e [c1 c2 03]T € R3 is the uncertain vector that goes
from the spacecraft CoM to the geometric center of the rear face of the CubeSat
(0'), and r; € R? is the vector that goes from O’ to the center of pressure of
the 4" DMD surface. Given the geometry and capabilities of the DMD, the

vector 7. also varies with the level of deployment of the drag surfaces.

3.5. Gravity Gradient Torque

The DMD-equipped CubeSat, considered a rigid body in space, experiences a
gradient of gravitational force along the body with the greatest attraction on the
parts that are closer to the Earth. This gradient produces the so-called Gravity
Gradient Torque (GGT) that depends on the attitude and inertia properties.
The GGT is given by [32]

.. o 3GMg
“CTRP

where Mg € Ry is the mass of the Earth, and G € Ry is the universal

R.*JR,, (26)

gravitational constant.

The GGT can be changed by extending/retracting the DMD surfaces which
directly affect the inertia matrix. A simple model to compute the variation of
the inertia matrix by assuming DMD surfaces that can be divided as a thick
walled cylinder (rolled portion) and a flat plate (deployed portion) [17], is used

to propagate the attitude dynamics for the numerical simulation in Section 6.

10
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4. Control Design

4.1. Control Objective

The objective is to design an adaptive controller for the spacecraft attitude to
track a given time-varying reference qq using only the influence of environmental
torques on the spacecraft attitude dynamics as described in (1). Uncertainties
associated with the average atmospheric density p and drag coeflicient Cp have
been addressed in previous work from the authors in [19]. However, assumptions
such as perfect knowledge of the inertia matrix J and the location of the CoM
r. were made to achieve the control objective along with on-line parameter
estimation. In this work, at the cost of losing the on-line parameter estimation
feature, an augmented vector is proposed to compensate for the uncertainties.

Although analytical models to compute the variation of the inertia matrix
can be developed, modeling approximations are inherent and lead to uncertain
disturbances. Moreover, modeling deviations in the CoM location will also result
in inaccurately computing levels of deployment for the DMD surfaces to produce
the torques required by a designed control law.

To achieve the proposed control objective, the subsequent control design will
be performed under the following assumptions.

Assumption 2. The spacecraft has the capability of using the computa-
tionally light Harris-Priester model [27] to calculate the atmospheric density
pup € Ry on-board. The real atmospheric density, whose behavior is more
complex than what is captured by the Harris-Priester model, is assumed to be

approximated by

p = Bi+ By pup, (27)

where Bj, Bs € R are unknown calibration constants. O
Assumption 3. The spacecraft is capable of approximately computing its

time-varying inertia matrix .J,, € R3*3, provided an on-board simplified ana-

11
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lytical model. The actual inertia matrix J can be expressed as

J = Jm + AJ, (28)

where AJ € R?*3 is the mismatch between the actual and modeled inertia
matrix. The inertia mismatch AJ, as well as its time derivative AJ, are
assumed bounded by known constants. Moreover, since the DMD surfaces are
driven by motors with limited velocity, then the rate of change of the inertia
matrix J can also be bounded by a known constant. O

Assumption 4. The desired quaternion qq, desired angular velocity wg and

its time derivative wq are known and bounded signals such that

lgall< ¢1y [lwal < G, llwall< G, (29)

where (1, (2, (3 € Ry are known bounding constants. O
Assumption 5. The spacecraft is equipped with an attitude determination
system that provides the controller with measurements of the angular velocity
w and quaternion q. O
Since the components of e satisfy (14), the attitude control objective can

be established as
R—1Ts as t — oo. (30)

Based on (12)-(14), the control objective in (30) can be achieved if

lles]]— 0 =]eg |— 1. (31)

4.2. Control Development

Let the modified state vector r € R3 be defined as
r2 o+ fey, (32)

where 3 € R3*3 is a symmetric, positive-definite control gain matrix. Taking

the time derivative of r and pre-multiplying by the inertia matrix J yields

3G Mg

TR RXJRo4+8—Jw—w*Jw—JRwg—J Risg+JBéy. (33)

Jr =T1p+7r+

12
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Using (15), (17), Assumption 3 and the fact that R = —w* R yields

J# =f+ N + Ng, (34)

where f, N , Np € R? are auxiliary variables defined as

a 3GMg | .
f_TD+TL+ch Jch_me (35)

— WX Jpw + Jpw* Rwg — Jm Risg + Jm B,
— . ~ ~ X
N2 _AJo—a*AJ (a, + Rwd) _ (Rwd) AJ&
- 1
+ AJ(:}XR(JJd + iAjﬂ (GUX + 60.’[3) (:J,

3GMs
[ Re|®

.~ ~ X ~ ~
Np 2 —AJRwq — (Rwd) AJRwq + RAJR.+6 — AJRwq. (37)

Since @ = r — fe,, and considering that || R.|| can be upper bounded by
a known constant. Using Assumptions 3 and 4, N and N B can be upper

bounded as

1N < o (lnl) [, (38)

INB| < (4, (39)

where (4 € Rsg is a known bounding constant, 7 € RS is an augmented state
vector defined as

L

n2 e, 7", (40)

and o: RS — Ris a positive, globally invertible and non-decreasing function.

To include the adaptation capabilities that compensate for the unknown
parameters, the term f that contains only measurable states and the modeled
inertia matrix J,,, can be linearly parameterized with respect to the unknown

parameters. First, consider the contribution of the j* DMD surface to the

13
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force due to the aerodynamic drag and lift Far,; € R3 which can be expressed

using Assumption 2 as

Far; 2Y;0;, j=1,234. (41)

In (41) Y; € R3** are measurable regression matrices defined as

Y; 2
Ljwy |V Liyw||[V Ll [ Ve |4
-, Vell pup| — : X nj X ——— | [1 pup]
2||Ve || 2 |Vl A
(42)
and the vectors ©; € R* are
R T
0; = |:B1CD,j ByCp; BiCL; BaCrj| - (43)

Therefore, the total aerodynamic torque Tar,; € R3 due to the aerodynamic
drag and lift in (25) can be rewritten as

4
Tar E7p 7L =X Y (Y;0,)+ Y (17Y;0;) (44)

Jj=1 Jj=1

NE

In (44), the first term can be expressed as

4 Oix16 Yr(3) Y. (2)| |Orc
e Z (Y;0;) = |-Y,(3) O1x16 Yi(1) O,c | (45)
= Y.(2) —=Y.(1) Oixis | |Orcs

where Y, € R3*16 is a measurable regression matrix defined as
Y, 2 [Y1 Yo Y3 Yy, (46)

and Y, (k) denotes the k'™ row of Y,. Similarly, the vector of uncertain

parameters @, € R16 is defined as

T
0.2 |0,” 8," 0," ©,"] . (47)

14
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The second term in (44) can be expressed as

4 YiB)rj2 —Y;(2)r)3
> (r7Yi05) =3 | |Vi(Urss = i) | ©5 | (48)
= @i - Vi
where 7; £ [rj1 ;2 7;3]7 is the vector defined in (25), and Y;(k) denotes the

k™ row of Y;. Substituting (45) and (48) into (44) yields

TaT = YarO AT, (49)

where Y7 € R3*64 is a measurable regression matrix and @47 € R% is a

vector of uncertain parameters, and are defined as

Yar =
Oix16  Yr(3) -Y.(2) YiQ)rie—Yi(2)riz -+ Ya(3)rae —Ya(2)ras
-Y.(3) Oixi6 Y.(1) Yi()rizs—Yi(3)rin - Ya(D)ras—Yi(3)rai|
Y.(2) -=Y.(1) Oixi6 Yi(2)ri1—Yi(D)rio -+ Yi(2)ra1 —Ya(D)rao
(50)
Oar=|0,7c; ©,7c; ©.7¢; ©,7|", (51)
respectively. Therefore, (35) can be rewritten as
f=Yeo, (52)

where Y £ [YAT i’%ﬁﬁ RYJnRe — Jpw — w* Jpw + o Rwg — JymRog +
Jmﬁév} € R3*65 is the measurable augmented regression matrix, and @ =
[@ ar’ 1]T € R% is the augmented vector of uncertain parameters.
Assumption 6. The time-varying vector of uncertain parameters © and its
time derivative, i.e., @, are bounded by known constants. The bounds for @

are given by

©
IN
@
IN
o

(53)
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where ©, © € R% are constant vectors containing the lower and upper bounds
of ©, respectively. O

Define the estimation error ® € R% as

©=0-0, (54)

where © € R% is the estimate of ©. Using (52) and (54), and adding and
subtracting the term Y® to the open-loop error system in (34) yields

JF=Y®+Y®O + N + Npg. (55)

The regression matrix Y contains measurable states and is influenced by the
actual inputs (i.e., the DMD surfaces lengths Ly, Lo, L3, L4), while the update
law for the estimated vector © will be subsequently designed. Therefore, the
measurable product Y © can be altered by modulating the length of the DMD

surfaces. This term is designated as the auxiliary control input @ € R3

YO 2 a. (56)

To facilitate the subsequent stability analysis, let the desired auxiliary control

signal g € R? be designed as
g £ —Kir — prey, (57)

where 31 € Ry is a positive constant gain, and K; € R3*3 is a constant,
positive-definite control gain matrix. Adding and subtracting #g and substi-

tuting (56) and (57) into (55) yields the closed-loop error system
Ji=YO+ N+ Ng+x — Kir — Bie,, (58)

where x £ @ — 1ig € R? represents the mismatch between the desired and the
actual auxiliary control inputs. Based on (58), the gradient-based adaptation
law is designed as

© £ proj(TYTr), (59)

16
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where T' € R%*65 is a constant, positive-definite adaptation gain matrix, and
proj(-) denotes the continuous projection algorithm presented in [33]. Based on
the value of (-) and the known bounds of ©, the design in 8 cnsures © remains
within the known bounded region without altering the stability of the system

nor introducing undesired discontinuities.

5. Stability Analysis

To facilitate the stability analysis, some definitions are introduced. Let
A1, A2, Az, Ay € Rog be defined as A\; 2 A\pin{K1} — (5 — 1, A2 = Bidmin{B),
A3 £ min (A, A2), and g £ A3 — M, respectively, where /3 is the control
gain defined in (32), Kj, S are the control gains used in (57), o (||n]) is
the function defined in (38), (5 € Rs( is a known bounding constant, and
Amin{-} € R is the minimum eigenvalue of {-}. Let the set D be defined as
D2 {77 ’ Inl|< ot (\/E)}, and let S C D be defined as

se{ne||nl<a}. (60)
where A £ \/% (0_1 (\/2)\3))2— E;—é? and )\, A, ¢, ¢ € Ry are known

bounding constants.

Theorem. Consider the spacecraft attitude dynamics governed by the non-
linear system in (1) with Assumptions 1-5. The auxiliary controller in (57) and
the adaptive update law in (59) ensure uniformly ultimately bounded attitude

tracking in the sense that

lles]| < erexp {—eat} + e, (61)

M10)[2+C /5 (-
where € £ 7”778” +e ¢ Ryg, € 2 % € Ryg, €3 2 ﬁ(g—i—% €

R.o, (s 2 C6+% € R, and (g, (7 € Ry are known bounding constants.
Provided that n(0) € S is satisfied, and that the control gains are selected
sufficiently large such that A; > 0, and A > e3.

Proof. Let V € R>q be a candidate Lyapunov function defined as

1
—rTJr 4 BreyTe, + B1(1 — e0)? +

V() = 3

17
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The Lypaunov function can be upper and lower bounded as

AlnlP+¢ < V(#) < Xnl*+<. (63)

Substituting (15), (16), (32), (54) and (58) into the time derivative of (62), and

T

using the fact that e,” e, & = 0, yields

. ~ —~ 1 .
V(t) =T (Y@ +N+Np+x-— Klr) +5rTr .

T o5 10 o' r-1G (6
— Bre,TBe, +© IO -6 IO,

Substituting the adaptive update law in (59) into (64), yields
. —~ 1 . ~T .
Vit)=r'N+r"Ng+rTx —rTKir —Bie,” Be, + §TTJ’I‘ +© I''e. (65)

In (64), the last two terms can be upper bounded using Assumptions 3 and 6

as

1 .
irTJr < §5||r||2, (66)

O T 16 < (. (67)

Using (38), (39), (66) and (67), (65) can be upper bounded as

V(t) < = Qumin{K1} = G) [Ir]® (68)
= Bidmin{BYlew|* + o ((lmDllnllllr I+ Ca + lxID) 7+

Assumption 7. A numerical optimization algorithm can be used to find a
suitable set of DMD surface lengths (i.e., L1, Lo, L3 and L,4) that minimizes
lIx||, and the resulting x can be upper bounded by a constant for the entire
maneuver such that ||x||< (7. O

Using Young’s inequality on the term o ([|n|]){|n|l[|7|| yields o({[n]){|nll|r(|<
w +2||7[[%. Similarly, the inequality (Ca + [|x]) [|7]|< %HTHQJFW
can be obtained using Assumption 7. Therefore, (68) can be rewritten as

a?([[nlDnl?

V() < =Aillr P =Delles|*+ 5

+ Cg- (69)

18
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The expression in (69) can be further upper bounded as

Vo) < - (30— T g, (70)

Provided m € D, then (70) can be rewritten as
V() < =Millnl*+¢s ¥n € D. (71)
Using the bounds in (63), (71) can be rewritten as

V(t) < _L;V(t) teo, (72)

where € £ (g + %E By invoking the Comparison Lemma from [34], the

solution to (72) can be obtained as

V) < exp{);lt} V(0) + ;460 (1 exp{/\;t}>. (73)
Using (63) and (73) yields

M)+ A X ¢
Iml< ("7(0;”“) exp{—;t} ¥ (mcs n Cf) R

Using (40) and (74) yields the uniformly ultimately bounded result in (61)
provided n(0) € S, where uniformity in initial time can be concluded from the
independence of A3 and the ultimate bound from e3 at time ¢ = 0. From (62),
(63) and (73), then r € L. Then, from (17) and (32), w € L. Similarly,
from (15) and (16), é,, ég € Loo. Since 7, w € Lo, and e, ey, wg € Lo
by definition, then @4 € Lo by (57). Since O c Lo by (59), tig € Lo, and
X € Loo by Assumption 7, therefore Y € L., using (56). |

6. Simulation Results

The simulations presented in this section are performed using the 4th order
Runge-Kutta fixed-step algorithm to propagate the orbital and attitude dy-
namics. The first simulation, in Subsection 6.1, illustrates the performance of

the controller when required to achieve a fixed orientation relative to the orbital
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frame (regulation maneuver). The second simulation, in Subsection 6.2, presents
the result obtained using the controller to track a time-varying reference rela-
tive to the orbital frame (tracking maneuver). Effects of aerodynamic drag and
lift, gravity gradient torque and Js perturbation are included in the spacecraft
dynamics. The NRLMSISE-00 atmospheric model is used as the true (unknown
for the controller) atmospheric density. The control law in (57) is computed ev-
ery 30 seconds to allow finding a suitable set of DMD surfaces lengths through
the formulation of a constrained function minimization problem that minimizes
x|, and includes the physical length constraints of the DMD surfaces. The
MATLAB fmincon command is used to solve the minimization problem

min YO — @g|| subject to {0 <L; <37 j=1,234 (75)
Lyi,Lo,L3,Ly

The spacecraft is simulated in a circular orbit with inclination of 51.94
degrees and 400 km altitude, similar to that of the International Space Station
(ISS). The initial orbital elements and spacecraft parameters are presented in
Tables 1 and 2, respectively. Additionally, the simulations also incorporate
modeling inaccuracies in the CoM location and inertia matrix. For visualization
purposes, in the subsequent simulation results, the orientation of the body with
respect to the orbital frame is expressed using a 3-2-1 Euler angle sequence,
where ¢, 6 and 1 denote the roll, pitch and yaw angles, respectively (see [17]
for details). The roll, pitch and yaw angles correspond to rotations about by, by
and 53, respectively. Simulation parameters, initial conditions and uncertainties
are the same for both simulation examples. The initial conditions (¢g, o, %0)

are presented in Table 3.
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Parameter Value

Semi-Major Axis [m] 6778 x 10°

Eccentricity 0
Inclination [deg] 51.94
RAAN [deg] 206.26

Arg. of Perigee [deg] 101.07
True Anomaly [deg]  108.08

Table 1: Initial orbital parameters for simulation of regulation and tracking maneuvers.

Parameter Value
CubeSat Body Mass [kg] 3

DMD Surface Mass [kg] 9 x 1072
Max. DMD Surface Length [m] 3.7

DMD Surface Width [m] 3.8 x 1072

Table 2: Spacecraft parameters for simulation of regulation and tracking maneuvers.

Parameter  Value

o [deg] 45
0o [deg] —60
Yo [deg] 50

do [deg/s] 5 x 1072
0o [deg/s] —7.5 %1072
Yo [deg/s] 6 x 1072

Table 3: Initial Euler angles and angle rates for simulation of regulation and tracking

maneuvers.
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6.1. Regulation Maneuver

To propagate the spacecraft dynamics, a model to compute the inertia ma-
trix J, as function of the DMD-surfaces lengths is used. Specifically, J,, is
computed by representing a 2U CubeSat structure as a rectangular box, and the
rolled and deployed portions of a DMD-surface are modeled as a thick walled
cylinder and a flat plate, respectively. The inaccuracy of J,, is introduced by
incorporating deviations in the mass for each part of the spacecraft and the

assumed locations of their individual CoMs are shown in Table 4.

Parameter Real (for J) Approx. (for Jy,)
CoM CubeSat Body [cm] [000]T [1.82 — 3|7

CoM Flat Plate (x1072) [m] [0 0 0]7 [4.5L% 0 0]T
Deployer mass [g] 89.88 75

Table 4: Uncertainties included in simulation to compute J,,. CoMs expressed in
coordinate systems centered at the geometric center of the body of interest, where

i=1,2, 3, 4.

The objective for this maneuver is to achieve a fixed orientation of the space-
craft with respect to the orbital frame. The controller parameters are shown in
Table 5, and the desired Euler angles are presented in Table 6. Figures 3 and
4 show the resulting quaternion error components and the corresponding trans-
formation to Euler angles for a 10 hour simulation, respectively. The results
show that the regulation objective was achieved with ultimate bounds for roll,
pitch and yaw within +3, +2 and +2.2 degrees, respectively.

As concluded in the stability analysis, the resulting ultimate bound can be
attributed to the size of the disturbance torques in 48, the residual error 1, the
unmodeled effects of the DMD on the inertia matrix, and the rate of change
of the uncertain parameters (i.e., @) Therefore, efforts on improving the
knowledge of the inertia matrix, using a good numerical algorithm to solve for
the lengths and avoiding high deployment rates, would have direct influence on

reducing the ultimate bounds.
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The levels of deployment for the DMD surfaces are shown in Figure 5. Ac-
tuator saturation was applied to account for the physical limits of the DMD
surfaces. Although this saturation was not explicitly modeled in the controller
design, the controller has shown to be robust enough to regulate the orienta-
tion despite the physical actuator limits. In an effort to reduce the influence
of rapid variations of the control inputs, a low-pass filter with cutoff frequency
we £ 0.017 Hz has been applied to the lengths calculated by the fmincon al-
gorithm and the maximum deployment rate among all DMD surfaces for this
maneuver was 2.9 meters per minute. The norm of the resulting mismatch
between @ and ugq (i.e., |x||) is shown in Figure 6. Due to the amplitude
limitations of the environmental torques, the actuators reached their saturation
limits multiple times during approximately the first five hours of the maneuver.
However, after the period of saturation, [|x| remained below 1 x 107% Nm.

The estimated parameters in © are shown in Figures 7 and 8 for the pa-
rameters associated with the aerodynamic drag and in Figures 9 and 10 for
the parameters associated with the aerodynamic lift. The estimations are di-
vided into four plots to better observe their variation over time because of their
different orders of magnitude. From the stability analysis, it cannot be con-
cluded that the estimation error © converges to zero, meaning that there is
no on-line parameter estimation. However, the results show that all parame-
ters are dynamically adjusted to compensate for the environmental and physical

uncertainties and remain bounded.
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Parameter Value

K (x1073)  diag(3,3,3)

B (x107%) diag(1.5,5,5)

B (x1076) 3.2

r diag (T'2,T', T2, ', 612, 6I'5, 'y, T'y, 10720)
Iy (x107%)  diag (1,10, 1,10, 1,10, 1,10M)

[y (x10722)  diag (2,2'1,2,2!1, 2,211 2, 211)

Table 5: Controller parameters used for simulation of regulation and tracking maneu-

vers.

ba [deg]  0q [deg]  ta [deg]
45 0 10

Table 6: Desired orientation of the spacecraft with respect to the orbital frame for the

regulation maneuver.

Magnitude

0 2 4 6 8 10
Time [h]

Figure 3: Resulting error quaternion for the regulation maneuver using the designed

controller.
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Figure 4: Resulting Euler angles for the regulation maneuver using the designed con-

troller.
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Figure 5: Required level of deployment for the DMD surfaces using the designed con-

troller for the regulation maneuver.
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Figure 6: Resulting mismatch ||x|| obtained using MATLAB fmincon to solve for the

DMD surfaces lengths for the regulation maneuver.

%1072

0.5]\
0

Time [h]

Figure 7: Resulting parameter estimates ElépJ in © with 7 = 1,2,3,4 associated

with the aerodynamic drag for the regulation maneuver using the designed controller.
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Time [h]

Figure 8: Resulting parameter estimates [61§16D,j, 611_%65,]-, égﬁlap,j, ézégap,j,
~ ~ ~ 1T
¢3B1Cp.j, éngCD,j] in ® with j = 1,2, 3,4 associated with the aerodynamic drag

for the regulation maneuver using the designed controller.

1073

15/
" fp—m———

@ 0.5}

0 2 4 6 8 10
Time [h]

Figure 9: Resulting parameter estimates EléL,j in © with J =1,2,3,4 associated

with the aerodynamic lift for the regulation maneuver using the designed controller.
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10718

Time [h]

Figure 10: Resulting parameter estimates [61§16L,j, é1§26L,]’, ézgla@j, égézé\i,j,
~ ~ ~ 7T ~
¢3B1CL,j, éngCL,j} in ® with j = 1,2, 3,4 associated with the aerodynamic lift

for the regulation maneuver using the designed controller.

For the specific spacecraft and orbit considered in the regulation example,
a feasible range of operation including saturation of the control inputs is deter-
mined by performing a set of 1000 five-hour simulations of regulation maneuvers.
The initial conditions and the desired Euler angles are randomly initialized as
shown in Table 7. The set of possible desired Euler angles has been selected so
that the operational range for a more demanding mission as compared to the
previous example is considered (e.g., pointing a camera on the ram/anti-ram
face of the spacecraft to a given objective).

To point the by body axis towards any direction inside a cone of limited
size with respect to the along-track direction &4, it is sufficient to vary the
desired roll and yaw angles. The size of the cone is driven by the bounds of
the yaw angle and all directions inside the cone are explored by varying the roll
angle. For all simulations, the spacecraft is considered stabilized if |le,||< 0.4
(user-defined) on average during the last 20 minutes of the maneuver, which
was found representative for successful maneuvers considering the ultimately

bounded result from the stability analysis. Figure 11 presents the percentage of
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stabilized maneuvers with different limits for the norm of the yaw angle |||

(i-e., cone sizes). Figure 12 illustrates the difference in size between cones result-

ing from yaw bounds of +8 and +25 degrees, with percentages of success of 80%

and 70%, respectively. The remaining percentage of failure can be attributed

to several factors including the limitations due to the DMD geometry, initial

conditions, and variations of atmospheric density, among others.

Parameter Range

oo, 6o, 1o [deg] [—10, 10]
o, 6o, o [deg/s]  [~0.02,0.02]
¢a [deg] [—180, 180]
04 [deg] 0

g [deg] [—25, 25]

Table 7: Parameter ranges for the set of 1000 five-hour simulations.

Success [%]

100

951

90 ¢

85

80|

75}

70}

65

0 5 10 15 20 25
1%l [deg]

Figure 11: Resulting percentage of successful regulation maneuvers vs. size of the cone.
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Figure 12: Resulting feasible range of operation, 8 degrees (80%), 25 degrees (70%).

6.2. Tracking Maneuver

The simulation presented in this subsection illustrates a scenario where the
CubeSat is required to change its orientation with respect to the orbital frame
over time. This task could be required for missions where the spacecraft needs
to adjust its orientation for pointing a sensor (e.g., a camera) towards different
areas during the mission. The scenario considers a spacecraft that is required
to track a desired trajectory of the roll angle while keeping the pitch and yaw
angles fixed. The initial conditions and control parameters are the same used
for the regulation maneuver, and the desired Euler angles are presented in Table
8.

Figures 13 and 14 show the resulting quaternion error components and the
corresponding transformation to Euler angles for a 10 hour simulation. These
results show that the CubeSat orientation reaches the ultimate bound in approx-
imately 5 hours. The ultimate bounds for roll, pitch and yaw are +3, +1.5
and =3 degrees, respectively.

The resulting lengths of the DMD are shown in Figure 15, where satura-
tion to account for the physical constraints was applied. The DMD surfaces

reached their saturation levels multiple times during the first two hours of the
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simulation, and the controller has shown to be robust during that portion of
the maneuver. The maximum deployment rate among all DMD surfaces for the
tracking maneuver was 2.6 meters per minute. Figure 16 shows the norm of
the mismatch between @ and g4 (i-e., || x||), after the period of saturation, it
remained below 8.9 x 1077 Nm.

The estimated parameters in © are shown in Figures 17 and 18 for pa-
rameters associated with the aerodynamic drag and in Figures 19 and 20 for
those associated with the aerodynamic lift. All the estimations remain bounded
and are dynamically adjusted to compensate for the uncertainties but on-line

estimation cannot be guaranteed.

$a |deg] 04 [deg]  a [deg]
35 + 15sin(4.36 x 107%¢) 0 0

Table 8: Desired orientation of the spacecraft with respect to the orbital frame for the

tracking maneuver.

0.8

0.6

0.4

0.2

Magnitude

Time [h]

Figure 13: Resulting error quaternion for the tracking maneuver using the designed

controller.
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Figure 14: Resulting Euler angles for the tracking maneuver using the designed con-

troller.
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Figure 15: Required level of deployment for the DMD surfaces using the designed

controller for the tracking maneuver.
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Figure 16: Resulting mismatch ||x|| obtained using MATLAB fmincon to solve for the

DMD surfaces lengths for the tracking maneuver.
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0.5
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Time [h]

Figure 17: Resulting parameter estimates §16D7j in © with j =1,2,3,4 associated

with the aerodynamic drag for the tracking maneuver using the designed controller.
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Time [h]

Figure 18: Resulting parameter estimates [61§16D,j, &1B:Cp,j, @BiCh,;,
~ ~ “ o~ 1T A
¢2B2Cp,;, ¢3B1Cpj, éngC’D,j] in ® with j = 1,2, 3,4 associated with the aero-

dynamic drag for the tracking maneuver using the designed controller.

-13
1510

0 2 4 6 8 10
Time [h]

Figure 19: Resulting parameter estimates E@L,j in © with 7 =1,2,3,4 associated

with the aerodynamic lift for the tracking maneuver using the designed controller.
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Figure 20: Resulting parameter estimates [61§16L,j, é1§26L,]’, 62§15L,j, égﬁzé\i,j,
~ ~ ~ 7T ~
¢3B1CL,j, éSBQCLJ] in ® with j = 1,2, 3,4 associated with the aerodynamic lift

for the tracking maneuver using the designed controller.

To illustrate the approach taken to evaluate the effect that the applied
torques may have on the long DMD surfaces, a comparison between the fre-
quency content of the applied torque and the first natural frequencies of a DMD
surface was performed for the tracking maneuver. A fully deployed DMD sur-
face was modeled as a cantilevered beam and the first natural frequencies were
computed using SolidWorks. Figure 21 illustrates the first five mode shapes and
their corresponding frequencies, and Figure 22 shows the Fast Fourier Trans-
form (FFT) of each component of the applied torque. From these figures, the
range of frequencies of the applied torques is reasonably below the first natural

frequency of the DMD surface (i.e., 0.1396 Hz).
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Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
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Figure 21: First natural frequencies of a fully deployed DMD surface.
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Figure 22: FFT of the torque Y© applied during the tracking maneuver.

7. Conclusion

This paper presented the design and validation through numerical simula-

tion of an adaptive controller for environmental torques-based attitude control

36



395

400

405

410

415

that compensates for uncertainties in the atmospheric density, drag and lift co-
efficients, and center of mass location. Moreover, the controller also considers
perturbations associated with the non-modeled behavior of the inertia matrix.
The obtained result ensures the alignment of the body and orbital frames within
ultimate bounds. Simulation results including aerodynamic and gravity gradi-
ent torques, actuator saturation, as well as the NRLMSISE-00 model for atmo-
spheric density and Jy perturbation, were performed to validate regulation and
tracking of the angles to their desired values relative to the orbital frame within
bounds of 43 deg. Therefore, the controller shows potential for applications
where the location of the center of mass, atmospheric density, drag coefficients
are uncertain and the inertia matrix cannot be accurately computed in real time.
Future work on this problem will consider strategies to address implementation

challenges such as failures to deploy a DMD surface.
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