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ABSTRACT

Precise attitude control system is critical for the success of space missions. Reaction wheels,
which are the most commonly used actuators in spacecraft, degrade over time due to the harsh con-
ditions in space. We present an adaptive controller that simultaneously estimates the time-varying
RW health degradation level while maintaining attitude tracking. We lift the assumption of constant
or slowly varying health degradation made in our earlier work by approximating the RWs nonlinear
health degradation using Radial Basis Function Neural Networks (RBFNN). We propose using a
Concurrent Learning (CL)-based adaptation law to ensure the convergence of the RBFNN weights
and biases, and thereby the health degradation levels, to their true values while maintaining attitude
tracking. Simulation results demonstrate that the learned health parameters also provide the con-
troller with the ability to reduce the control effort allocated on the degraded wheel, helping prevent
its winding temperature from rising.

INTRODUCTION

Spacecraft attitude control systems play an important role in ensuring the success of space mis-
sions. Reaction wheels (RWs) are often chosen as the actuators due to their ability to precisely apply
control torques to the spacecraft. However, RWs are susceptible to failure due to their moving parts
and the harsh conditions of space environment.1–5 A range of solutions to address uncertainties and
faults in spacecraft have been explored, including the sliding-mode control,6 observer-based,7 adap-
tive controllers,8–10 and neural network-based methods.11 The advantage of adaptive controllers is
their ability to compensate for uncertainties in the system dynamics, whilst maintaining control over
the system in a computationally inexpensive manner. Neural networks are capable of learning un-
certain parameters, but their increased size, complexity, and learning based on iterative algorithms
often make it difficult to integrate them into stability analyses and implement on real-time spacecraft
hardware. As such, methods utilizing Neural Networks should account for this limitation in their
development.

In our prior work,10 we designed an adaptive controller that can simultaneously estimate and
compensate for the degradation level of the RWs while maintaining accurate attitude tracking when
there are RW failures or degradation. Under the assumption of a constant or slowly varying health
factor, our method involved a Lyapunov-based adaptive control system with an integral concurrent
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learning (ICL)-based update law that ensures convergence of the estimated RW health once a suffi-
cient Finite Excitation (FE) condition is met. Despite promising results, the main limitation was the
constant or slowly varying health parameters assumption. This assumption limited the controller’s
uncertain parameter estimation performance in scenarios with a time-varying health change. To
mitigate the effect of this assumption, a regular reset of the ICL term was proposed to allow the
controller collect new data periodically and provide a more accurate fault estimation.

This work addresses the aforementioned problem by proposing the use of Radial Basis Func-
tion Neural Networks (RBFNN) to approximate a nonlinear function that describes the RWs’ health
degradation level, relaxing the constant health parameters assumption whilst still maintaining stable
attitude tracking. Using RBFNN, provides the controller’s with the ability to learn more complex
fault profiles influenced by factors such as wheel speed, spacecraft angular velocity, time, and inter-
nal winding temperature.1

This paper is outlined as follows. The first section derives the spacecraft dynamics and RBFNN-
based fault model. The next two sections present the design of the proposed RBFNN-based con-
troller and the stability analysis. The following section discusses the simulation results. Finally, the
conclusion and future work are described.

SPACECRAFT ATTITUDE DYNAMICS

Given the attitude equations of motions (EoMs) for a Spacecraft with N RWs

Jω̇ = −ω × (Jω + JRWGΩ)− JRWGΦΩ̇ (1)

σ̇ =
1

4

[(
1− σTσ

)
I3 + 2σ× + 2σσT

]
ω, (2)

where ω ∈ R3 is the spacecraft inertial angular velocity expressed in the body frame, σ ∈ R3 are
the Modified Rodrigues Parameters (MRP) representing the attitude of the spacecraft with respect
to the inertial frame, Ω ∈ RN contains the angular velocity of the N reaction wheels, J ∈ R3×3

is the total inertia matrix, JRW ∈ R>0 is the inertia of the flywheels about their spin axis, Φ =
diag{ϕ1, ϕ2, · · · , ϕN} ∈ RN×N is the uncertain RW health matrix, G ∈ R3×N is the RW array
configuration matrix.

From the Equation (1), we rewrite the term −JRWGΦΩ̇ as

−JRWGΦΩ̇ = −G diag (τRW )Φvec, (3)

where τRW = JRW Ω̇, and Φvec = [ϕ1, ϕ2, · · · , ϕN ] ∈ RN is the vector of reaction wheel
“health” parameters.

Instead of assuming that Φvec is constant, we apply the universal function approximation the-
orem of Neural Networks12 to approximate Φvec with RBFNNs. We treat each individual wheel-
health factor ϕi as an unknown nonlinear function and estimate it with its own RBFNN due to the
fact that approximating the nonlinear health profiles of all wheels with one RBFNN model expo-
nentially increases the required number of RBF’s to span the entire feature space. As each health
profile is independent of one another and only dependent on the characteristics of the corresponding
wheel, creating one RBFNN for each RW instead of coupling reduces the required number of RBF’s
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from Mm RBF’s to M · m. Where M ∈ Z>0 is the chosen number of RBFs to span each input
feature’s range, and m ∈ Z>0 is the number of features that affect a RW’s health.

The choice of using an RBFNN over other Neural Network (NN) structures, such as a Multilayer
Perceptron (MLP), is due to a key component in CL-based adaptation law design that requires the
uncertain terms to be expressed in a form that is linear in the uncertain parameters. The structure
of RBFNNs is suitable for this purpose when weights and biases are their only tunable parameters.
The use of a MLP would result in some tunable parameters confined within nonlinear activation
functions, complicating the derivation of formal convergence guarantees of the uncertain NN pa-
rameters.

Each RW-health factor ϕi can then be expressed as

ϕi = W T
i Si(x̄i) + εi, i = 1, . . . , N (4)

where εi is the function approximation error (unknown, bounded and in general smaller as the
size of the network increases), x̄i = [xi

T , 1]T , xi ∈ Rd is the vector of inputs (features) to the
NN, Si(x̄i) ∈ RMi+1 is the vector of nonlinear activation functions (including the appended unity
to account for the bias terms), Mi ∈ Z>0 is the number of neurons assigned to wheel i, and
Wi ∈ RMi+1 contains weights and biases of the i-th RBFNN.

For our purposes, the term W T
i Si(x̄i) represents an RBFNN assigned to RW i with Mi neurons,

where the vector Wi contains the NN’s weights and biases between the hidden and output layer.
The vector of RBFs activation functions Si(x̄i) with its jth entry defined as

Si,j(x̄) = exp

(
−(x̄i − µi,j)

T (x̄i − µi,j)

η2i,j

)
, (5)

where j ∈ Z>0 denotes the jth neuron index for wheel i, µi,j ∈ Rd+1 is the “position" of the
hidden node or neuron’s RBF in the feature/input space, and ηi,j ∈ R>0 is the “width” of the jth

RBF.
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Figure 1: RBFNN with Gaussian activation centered at µi,j and width ηi,j .

For the ith wheel, the term W T
i Si is a scalar, and can therefore be transposed as

W T
i Si(x̄i) = ST

i (x̄i)Wi, i = 1, . . . , N, (6)
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Stacking all outputs into a vector, we obtain Φvec as

Φvec =

 ST
1 W1

...
ST
NWN

+ ϵ =


ST
1 0 · · · 0
0 ST

2 · · · 0
...

...
. . .

...
0 0 · · · ST

N



W1
W2

...
WN

+ ϵ (7)

where the ith contains the transposed activation vector ST
i = [Si,1(x̄i) . . . Si,Mi(x̄i) 1 ] and zeros

elsewhere.

Equation (7) can be further expressed with the simplified short-hand notation

Φvec = b̃lkdiag
(
ST
1 , . . . , S

T
N

)
W + ϵ, (8)

where W =
[
W1

T W2
T . . . WN

T
]T and ϵ = [ε1, . . . , εN ]T

By plugging-in Equation (8) into Equation (3) yields

−JRW GΦ Ω̇ = −Gdiag
(
τRW

) (
b̃lkdiag

(
ST
1 , . . . , S

T
N

)
W + ϵ

)
, (9)

where τRW ∈ RN .

We define the regressor matrix Ψ ∈ R3×(M+1)N as

Ψ = −G diag
(
τRW

)
b̃lkdiag

(
ST
1 , . . . , S

T
N

)
, (10)

Equation (9) can be rewritten as

−JRWGΦΩ̇ = ΨW −Gdiag(τRW )ϵ = ΨW +Gdiag(τRW )ϵ (11)

where the term involving ϵ is rewritten with the sign flipped, so the residual remains positive.

CONTROLLER DESIGN

Control Objective

The objective is to design an adaptive controller that guarantees attitude tracking and convergence
of estimates of the RBFNN’s weights/biases ŴT to their true values WT . As opposed to directly
learning the RWs health parameters ϕ1, ϕ2, · · · , ϕN , we propose a Concurrent Learning (CL)-based
adaptation law to ensure convergence of the RBFNN’s weights and biases.

Using Equation (11), the dynamics in Equation (1) can be expressed as

Jω̇ = −ω × (Jω + JRWGΩ) + Ψ W +Gdiag(τRW )ϵ (12)

σ̇ =
1

4

[(
1− σTσ

)
I3 + 2σ× + 2σσT

]
ω (13)

Let us define the weights/biases estimation error as W̃ = W − Ŵ, and the EoMs can be
rewritten as
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Jω̇ = −ω × (Jω + JRWGΩ) + Ψ W̃ +Ψ Ŵ +Gdiag(τRW )ϵ (14)

σ̇ =
1

4

[(
1− σTσ

)
I3 + 2σ× + 2σσT

]
ω (15)

Assumption 1. The spacecraft carries an attitude-determination system capable of delivering the
angular velocity ω and attitude σ measurements/estimates in real-time.

Let us define the attitude error MRP σe = σ − σd ∈ R3 and the relative angular velocity
ω̃ = ω − R̃ωd ∈ R3 where R̃ represents the rotation matrix between body and the desired frames
and is defined as

R̃ = I3 +
8σe

×σe
× − 4(1− σe

Tσe)σe
×

(1 + σe
Tσe)2

. (16)

The attitude error and the relative angular velocity obeys the following kinematics equation13

σ̇e =
1
4B ω̃, (17)

with B =
(
1− σe

Tσe

)
I3 + 2σe

× + 2σeσe
T .

The attitude control objective is achieved when

∥σe∥ → 0, and ∥ω̃∥ → 0 ⇒ ∥σ̇e∥ → 0. (18)

which implies that
R̃ → I3, as t → ∞. (19)

Control Development

We introduce the auxiliary error r ∈ R3 as

r = σ̇e + ασe, (20)

where α ∈ R3×3 is a symmetric, positive definite control gain matrix. The time derivative of the
Equation (20) can be obtained as,

ṙ =
1

4
Ḃω̃ +

1

4
B
(
ω̇ − R̃ω̇d − ˙̃Rωd

)
+ ασ̇e, (21)

with Ḃ =
[
−2σT

e σ̇eI3 + 2σ̇×
e + 4

(
σ̇eσ

T
e

)]
.13

Using the dynamics in Eq. (15), and the fact that ˙̃R = −ω̃×R̃, we obtain

ṙ =
1

4
Ḃ ω̃ +

1

4
B
[
J−1(−ω × (Jω + JRWGΩ)+

Ψ W̃ +Ψ Ŵ +Gdiag(τRW ) ϵ− R̃ω̇d + ω̃×R̃ωd

]
+ ασ̇e. (22)
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Since the term ΨW contains the control input τRW , i.e. RW torques, we design the the auxiliary
control signal ud ∈ R3 as

ud = ω × (Jω + JRWGΩ) + JR̃ω̇d − Jω̃×R̃ωd

+ 4JB−1
[
−1

4Ḃω̃ − ασ̇e −Kr − βσe

]
, (23)

where K ∈ R3×3 and β ∈ R>0 are constant, symmetric, positive definite control gains.

Based on the Equation (22) and (23), we propose an adaptation law with a gradient-based term
and a CL term that collects input-output data.14 The adaptation law for the RBFNN weight and bias
estimates is proposed as

˙̂W = proj
{

1
4ΓΨT (J−1)TBTr

+ ΓKCL

Ns∑
i=1

ΨT
i

(
Jω̇i + ωi ×

(
Jωi + JRWGΩi

)
−Ψi Ŵ

)}
(24)

where Γ, KCL ∈ R(M+1)N×(M+1)N are symmetric, positive-definite adaptation gain matrices.
proj{·} is a projection algorithm used to confine the Ŵ to a user-defined bounds.15

The commanded torque in the body frame ud is mapped to the torque produced by the reaction
wheels through the following relationship

G Φ̂ τRW = ud, (25)

where Φ̂ = diag(Φ̂vec) is the estimate of the actual wheel-health factor Φ.

We can obtain the actual RW control input τRW as

τRW =
(
GΦ̂
)†

ud (26)

where (·)† is the Moore–Penrose pseudoinverse.

Assumption 2. There exists a finite time T > 0 such that

λmin

( Ns∑
i=1

ΨT
i Ψi

)
≥ λ̄, (27)

where λmin{·} determine the minimum eigenvalue of the finite excitation condition matrix {·} and
λ̄ ∈ R>0 is a user-defined threshold value.

STABILITY ANALYSIS

Let us define the composite state vector z = [rT ,σT
e , W̃ ]T ∈ R 6+(M+1)N and divide the analysis

into two parts: the first part shows the stability of the closed-loop dynamics at time t < T , where
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the finite excitation condition is not yet satisfied; and the second part considers the stability analysis
for time t ≥ T .

Consider the following Lyapunov candidate function

V (z) =
1

2
rTr +

β

2
σT
e σe +

1

2
W̃ T Γ−1 W̃ (28)

There exist two positive constants κ, κ̄ such that,

κ∥z∥2 ≤ V (z) ≤ κ∥z∥2 (29)

Using the time-derivative of the modified state vector ṙ, and the auxiliary control law ud, we get

V̇ (z) = rT
(
1
4 B J−1 (Ψ W̃ +Gdiag(τRW )ϵ)−K r

)
− β σT

e ασe − W̃ T Γ−1 ˙̂
W. (30)

Using Equations (13) and (24), the adaptation law can be expressed in its equivalent analytical
form

˙̂W = proj
{

1
4 ΓΨT (J−1)TBT r + ΓKCL

Ns∑
i=1

ΨT
i Ψi W̃ +ΨT

i Gdiag(τRW,i)ϵi

}
. (31)

Plugging it into Equation (30), we obtain the expression for V̇ as

V̇ (z) = − rTK r − β σT
e ασe − W̃

T
KCL

Ns∑
i=1

ΨT
i ΨiW̃

− W̃ TKCL

Ns∑
i=1

ΨT
i Gdiag(τRW,i)ϵi + rT

(
1
4 B J−1Gdiag(τRW )ϵ

)
. (32)

Part I: Pre-finite-excitation phase

Theorem 1. If the FE condition is not yet satisfied (i.e., 0 ≤ t < T ), the tracking-error state
y = [rT , σe]

T ∈ R6 is ultimately bounded such that

∥y(t)∥ ≤
√

γ

γ
∥y(0)∥ exp

(
− η

2 γ
t
)

+

√
b̄− b

γ
+

√
c γ

η γ
0 ≤ t < T. (33)

Proof. Consider the following tracking-error states y = [rT , σe]
T . There exists bounding con-

stants γ, γ, b, b ∈ R>0 such that

γ ∥y∥2 + b ≤ V (y) ≤ γ ∥y∥2 + b. (34)
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Before time t = T , the Equation (32) can be upper bounded

V̇ (y) ≤ −λmin{K}∥r∥2 − βλmin{α} ∥σe∥2 + ∥r∥ ϵ̄1 + ϵ̄2. (35)

where ϵ̄1, ϵ̄2 ∈ R>0 are constant bounds for therms involving the RBFNN approximation error such
that ∥∥∥1

4B J−1Gdiag(τRW )ϵ
∥∥∥ ≤ ϵ̄1, ,

∥∥∥∥∥W̃ T
KCL

Ns∑
i=1

ΨT
i Gdiag(τRW,i)ϵi

∥∥∥∥∥ ≤ ϵ̄2, (36)

where the following facts were used: Ŵ is bounded due to the projection algorithm in Equation
(31), the applied RW torques τRW are bounded due to the spacecraft+RWs being a closed system
exchanging angular momentum, and RBF activation functions in Ψ are bounded by definition.

Applying Young’s inequality as ∥r∥ ϵ̄1 ≤ 1
2∥r∥

2 + 1
2 ϵ̄

2
1, yields the expression for V̇ (y)

V̇ (y) ≤ −λmin{K}∥r∥2 − β λmin{α} ∥σe∥2 + 1
2 ∥r∥

2 + 1
2 ϵ̄

2
1 + ϵ̄2 (37)

≤ −
(
λmin{K} − 1

2

)
∥r∥2 − β λmin{α} ∥σe∥2 + c (38)

with c = 1
2 ϵ̄

2
1 + ϵ̄2.

Here, let us define the following constants to simplify the expression

c1 = λmin{K} − 1
2 > 0, c2 = β λmin{α} > 0 . (39)

Then, V̇ (y) can be expressed as,

V̇ (y) ≤ −η ∥y∥2 + c, (40)

with η = min{c1, c2} > 0. Using the upper bound of the Equation (34), we replace ∥y∥2 with
(V (y)− b̄)/γ, and rewrite V̇ (y) as

V̇ (y) ≤ −η

γ
V (y) +

(
ηb̄

γ
+ c

)
(41)

Using the comparison Lemma, obtain the following

V (y(t)) ≤
(
V (y(0))− b̄− cγ

η

)
exp
(
−η

γ
t
)
+ b̄+

cγ

η
0 ≤ t < T. (42)

Using the lower quadratic bound in Equation (34), yields the upper bound for ∥y(t)∥ in Equation
(33), where the tracking error vector y decays with the rate of η/(2γ) until it reaches the bound√
(b̄− b)/γ +

√
c γ/(η γ).
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Part II: Post-finite-excitation phase

Theorem 2. Once the FE condition is satisfied, the composite error state z(t) converges exponen-
tially until it reaches a bound whose radius depends on the RBFNN approximation error. z(t) is
expressed as

∥z(t)∥ ≤
√

κ

κ
∥z(T )∥ exp

(
− ζ

2κ
(t− T )

)
+

√
c3 κ

ζ κ
t ≥ T. (43)

where ζ = min{λmin(K)−1
2 , βλmin(α), λmin(KCL

∑Ns
i=1Ψ

T
i Ψi)−1

2},
∥∥∥KCL

∑Ns
i=1Ψ

T
i Gdiag(τRW,i)ϵi

∥∥∥ ≤
ϵ̄3, and c3 =

1
2(ϵ̄

2
1 + ϵ̄23).

Proof. With the finite excitation condition satisfied (t ≥ T ), the matrix
∑Ns

i=1Ψ
T
i Ψi becomes

positive definite. The Equation (32) can be rewritten as

V̇ (z) ≤ −
(
λmin(K)− 1

2

)
∥r∥2 − β λmin(α) ∥σe∥2

−

(
λmin

(
KCL

Ns∑
i=1

ΨT
i Ψi

)
− 1

2

)
∥W̃∥2 +

1

2
(ϵ̄21 + ϵ̄23). (44)

The expression for V̇ (z) can be simplified as

V̇ (z) ≤ −ζ∥z∥2 + c3. (45)

Using the upper bound from the Equation (29), we rewrite the expression in terms of V (z)

V̇ (z) ≤ − ζ

κ
V (z) + c3. (46)

Similarly, by comparison Lemma, we obtain the expression

V (z(t)) ≤
(
V (z(T )− c3κ

ζ

)
exp
(
− ζ

κ
(t− T )

)
+

c3κ

ζ
t ≥ T. (47)

Applying the quadratic bounds from Equation (29), for t ≥ T , we obtain Equation (43). The
finite excitation results in the exponential decay of both tracking and weight-estimation error to
reach the bound

√
c3 κ/(ζ κ)

SIMULATION

The following section describes the simulation setup to validate the proposed controller’s ca-
pabilities of maintaining the attitude tracking while simultaneously learning the weight-bias of the
RBFNN, resulting in the estimation of the health factor of each individual wheel. The setup includes
the construction of the temperature-driven health model, where the RW health factor is modeled to
depend on the winding temperature of the wheel, and we assume that the controller has access to
measurements of the winding temperature of each RW. The RW winding temperature is modeled
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with a first-order energy-balance ODE adopted from Basilisk’s motorThermal module documenta-
tion16

Ṫw,i = −λT,i (Tw,i − Tenv) + γT,i ∥τiΩi∥, (48)

where λT is the cooling rate, γT is the heating rate, τ is the torque applied to the wheel, Ω is the
angular velocity of the wheel, Tenv is the ambient temperature. The coefficients λT and γT are
obtained based on the thermal properties from the datasheet of the Maxon EC 60 flat brushless mo-
tor.17 To simulate the faulty wheel, the degraded RW is assigned a lower, less effective cooling rate
and a higher heating rate (i.e, having lower efficiency). The ambient temperature Tenv is modeled as
a sine wave with a 90-minute period that mimics the orbital day-night cycling, which is standard for
first-order lumped spacecraft thermal models.18 The bias temperature 34◦C was chosen as a com-
mon operating bus temperature of the spacecraft, and the amplitude ±20◦C was selected to create
some variation of temperature for the healthy wheel that is within their safe operating range.19

Each wheel-health factor is modeled to depend on the winding temperature of the RW through
the following expression,

ϕi = exp
[
−α z2i

]
, zi =

max
(
Tw,i − Tnom, 0

)
Tmax − Tnom

, (49)

and is modeled based on the physics-of-failure (PoF) reliability handbooks20, 21 and related study.1

Table 1 shows the parameters chosen to build the wheel-health factor expression. As the wheel
overheats, it drives the health factor ϕ close to zero, which lowers the effective torque available
from the wheel. The health-map gain α controls how much health is left when the temperature
reaches the hot-case limit. The gain α is set to three so that it outputs the wheel-health factor of
only 5% when the winding temperature reaches the limit. The maximum temperature is chosen as
120 ◦C based on datasheet17 and an experimental study.22

Table 1: Configuration parameters of wheel-health factor model.

Parameters Nominal Degraded Units

Cooling rate, λT 2.6× 10−2 1.25× 10−3 s−1

Heating rate, γT 2× 10−2 4× 10−1 K(Nm)−1

Nominal temperature, Tnom 34 34 ◦C

Maximum temperature, Tmax 120 120 ◦C

Health-map gain, α 3 3 N/A

For the health estimation, the health of each individual wheel is approximated using a single-
input RBF neural network. In this setup, the input is the normalized winding temperature. The
architecture of each RBFNN is an 11-node network consisting of 10 RBFs with uniformly spaced
centers (i.e., µi,j) between 0.05 and 0.95 with a common width (i.e., ηi,j) of 0.12, and one bias. All
four wheels are assumed to be initially healthy at the beginning of the simulation. To ensure that the
initial health estimate is set to healthy (ϕ ≈ 1), the hidden weights are randomly initialized close
to zero, and the bias is initialized close to one. With four wheels, the RBF network resulted in 44
unknown parameters to be learned by the controller. Configuration parameters are summarized in
Table 2.
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Table 2: RBFNN configurations.

Parameters Value Units

Tmin, Tmax (nominal) 20,60 ◦C

Tmin, Tmax (degraded) 20,120 ◦C

Basis functions 10 RBFs –

Centers, µk 0.05 . . . 0.95 (uniform) –

Width, η 0.12 –

Weight init. weights [-0.1,0.1], bias [0.8,1.0] –

In all simulation scenarios, the spacecraft follows a 12-minute alternative attitude reference be-
tween inertial and Nadir pointing throughout the test, which lasts for 40,000 seconds. Spacecraft
configuration parameters are listed in Table 3, and the gains for each scenario are listed in Table 4.

Table 3: Table of configuration parameters for the RWs for each simulation.

Parameter Value Units
Satellite Mass 25 kg

J diag{0.4333, 0.7042, 0.7042} kgm2

IC (a, e, i, ω,Ω, θ)
[
6878 0 0.8901 05236 0.3491 0.7854

]
(km,N/A, rad)

IC (q, ωb)
([

1 0 0 0
]
,
[
0.0017 0.0087 0.0017

]) (
N/A , rad s−1

)
G (4 RWs)

0.5774 −0.5774 0.5774 −0.5774

0.5774 0.5774 −0.5774 −0.5774

0.5774 0.5774 0.5774 0.5774

 N/A

JRW 5.7296× 105 kgm2

Max RW Torque 20× 10−3 Nm

Max Ω (for all RWs) 1.0472× 103 rad s−1

Table 4: Gain matrices/parameters used in the test scenarios.

Gain Scenario A Scenario B

K 0.1I3 0.1I3

α 3×10−2I3 3×10−2I3

β 5×10−3 5×10−3

Γ 10−1I44 100I4

KCL 2× 103I44 0 (disabled)

λ̄ 1× 10−9 N/A

The health model setup for all scenarios is identical, in which RW4 suffers a poor thermal condi-
tion, and its winding temperature keeps rising during the operation. For Scenario A, the objective is
to validate the performance of the new controller with the new health profile, which is a nonlinear,
time-varying, and temperature-dependent function. This scenario also demonstrates the important
CL terms in driving the convergence of the estimated health to its true value once the excitation con-
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dition is satisfied. Scenario B aims to compare the advantages of the new controller by comparing
it with the previously developed controller.

RESULTS

Scenario A: RBFNN+CL Controller

Figure 2 shows the simulation result for this case. The error MRP times series in Figure 2a,
and body angular velocity times series in Figure 2b illustrate that the spacecraft achieved the atti-
tude tracking. Because the simulation duration is long, the spikes indicate the attitude responses
that occur when the spacecraft alternates between inertial hold and Nadir pointing. As seen in the
zoomed-in plot, the attitude response settles to its steady-state, confirming the accurate tracking.
Figure 2c plots the winding temperature of all four wheels, and it can be seen that the winding
temperature of RW#4 is higher than the others due to its poor thermal management, indicating the
faulty condition.
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Figure 2: Scenario A: 4 RWs with CL Term Activated.
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Figure 3 demonstrates the importance of the CL term for the convergence of the estimated health-
factor to its true values. Figure 3a shows the plot of the lambda λ with the threshold λ̄ = 10−9,
which is user-defined, and serves as an indication of when the controller has gathered enough in-
formation about the system. Figure 3b and 3c shows the true health factors ϕi and their estimates
ϕ̂i, respectively. Before the λ̄ threshold, the RW health estimated hovered around one and could not
respond to the rapid change of the true health factors. Once λ passes the threshold λ̄ = 10−9, the
CL term is activated. As evident in Figure 3c, the estimated RW health closely tracks its true value
as demonstrated in the stability analysis section.
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(c) Estimated Health

Figure 3: Reaction Wheel Health Estimation with RBF+CL Controller.

Figure 4 compares the winding temperature of RW#4 when the CL term is activated versus when
it is deactivated. The health factor is modeled to depend on RW winding temperature, and the
winding temperature depends on the amount of torque and angular velocity applied. Since the CL
term is not activated, the controller was not able to accurately estimate the health of the RW#4.
The controller continues to apply torque to RW#4, causing its temperature to rise, further degrading
its health factor. With the CL term activated, the controller is able to estimate the health factor of
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degraded torque, and it can effectively allocate more torque to those non-degraded wheels than to
the degraded ones. Therefore, with the help of the CL term, the controller was able to prevent the
RW#4 from overheating as seen in the Figure 4.
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Figure 4: Comparison of RW#4’s Winding Temperature with and without Activation of CL Term

Scenario B: ICL controller performance with realistic, nonlinear health model

In our previous work,10 we developed an adaptive controller with an Integral Concurrent Learning
(ICL) term that was able to learn the health parameters of the reaction wheels, given the assump-
tion that the health parameters were constant or slowly time-varying. Although successful under
this assumption, this did not allow us to properly model the complex, nonlinear health profile that
realistic RWs experience. In this scenario, we apply this more realistic, nonlinear health model to
our old adaptive controller to emphasize the capability of our new model to adequately learn such
a nonlinear function. Figure 5 compares the true healths of the wheels during the simulation (a),
and the estimated healths estimated by the ICL controller (b). It is evident that the controller, albeit
activating the ICL term within periodic resets, is unable to accurately learn the health of the RWs.
The constant health assumption is quite strict on this model and is hence why it struggles to capture
the behavior of this health profile. It is able to recognize the fact that the wheel has degraded, but
not accurately.

For this scenario, all health profiles based on coil winding temperature and guidance commands
were kept the same as Scenario A to ensure a fair comparison between the two models. Not shown
here, are the RWs temperatures during the simulation as they are similar to the No-CL profiles in
Figure 4. The ICL controller was not able to effectively reduce the temperature, and hence wear on
the degraded RW like it is able to with the CL controller.
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Figure 5: Reaction Wheel Health Estimation with ICL Controller.

CONCLUSION

In this paper, we proposed an adaptive controller that guarantees attitude tracking and reaction
wheel health estimation by using Radial Basis Function Neural Network (RBFNN) and a Concurrent
Learning (CL) adaptive control framework.

The new controller retains the Lyapunov-based stability guarantees of the original controller
while being capable of identifying nonlinear, time-varying reaction-wheel (RW) health degradation
that depends on winding temperature, wheel angular speed, and spacecraft angular velocity. Sim-
ulation results show that, compared with the previous approach, the new RBFNN + CL controller
still provides accurate attitude tracking while being capable of learning the true health of a degraded
wheel more accurately, and also helps reduce the wheel winding temperature from overheating.

Future work will focus on improving the wheel-health factor model using more accurate temper-
ature data, validating the controller on a hardware-in-the-loop attitude testbed, and exploring the
use of other, more complex NN architectures while retaining stability guarantees. This work serves
as a stepping stone to use more complex NN architectures such as fully connected single-layer NNs
(with weights/biases also in the input-to-hidden layer connections), and Deep NNs.
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