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ABSTRACT

We propose the Hardware-in-the-Loop (HIL) test of an adaptive satellite attitude control system
with reaction wheel health estimation capabilities. Previous simulations and Software-in-the-Loop
testing have prompted further experiments to explore the validity of the controller with real momen-
tum exchange devices in the loop. This work is a step toward a comprehensive testing framework for
validation of spacecraft attitude control algorithms. The proposed HIL testbed includes brushless
DC motors and drivers that communicate using a CAN bus, an embedded computer that executes
control and adaptation laws, and a satellite simulator that produces simulated sensor data, estimated
attitude states, and responds to actions of the external actuators. We propose methods to artificially
induce failures on the reaction wheels, and present related issues and lessons learned.

INTRODUCTION

Reaction Wheel (RW) arrays are crucial means for attitude control on many satellites due to their
ability to precisely execute the control actions required for attitude maneuvers via exchange of an-
gular momentum.1 As such, it is a highly critical subsystem that incorporates levels of redundancy
in the case of actuator faults. Extensive research has been made to enhance the capabilities of atti-
tude controllers so that they minimize the hardware cost and computational load as much as possible
whilst being able to guarantee tracking.2–5 Methods such as Sliding Mode Control (SMC),6 Model
Predictive Control (MPC),7, 8 neural networks9 as well as a variety of adaptive controllers10–14 have
been proposed for attitude control, each with varying capabilities and degrees of success. The ad-
vantage of adaptive controllers is their ability to compensate for uncertaities in the system dynamics,
whilst maintaining stability.

In our previous work,15 we proposed a method to simultaneously learn the health of a satellite’s
RWs and attitude tracking under scenarios of failing or degraded RW(s). Our method involves a
Lyapunov-based adaptive controller with an integral concurrent learning (ICL)-based adaptive up-
date law that ensures convergence of the estimated health of the RWs once a finite excitation condi-
tion is met. This controller was shown to guarantee exponential convergence of error states and RW
health estimates. We demonstrated via MATLAB/Simulink-based numerical simulations that the
controller correctly estimated the health of each RW and performed the alternating attitude tracking
reference required by the mission. We presented simulations with arrays of 4 and 6 RWs, a varying
number of degraded RWs and varying levels degradation. A Software-in-the-Loop (SIL) test of the
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controller was conducted to test the real-time capability with embedded hardware (NVIDIA Jetson
Nano), achieving comparable results.

The promising SIL experiments have prompted us to continue with a Hardware-in-the-Loop
(HIL) test to validate the adaptive controller in more realistic conditions, including hardware lim-
itations, sensor noise, and communication latency that are difficult to replicate in simulation. In
addition, we aim to use this controller to demonstrate and validate our envisioned modular testbed,
currently under development, at the Space Vehicle and Robotics (SVR) lab at the Florida Institute
of Technology.

HIL testing is a vital aspect in the development of real, flight ready controllers and actuator-driver
systems as it is a mission critical system that can afford little to no failures. The sim-to-real gap is
large and poses a number of issues when developing control systems, the greatest of which is the
ability to model the behavior of the actuating system in simulation as close to the real behavior as
possible. RW dynamics, although can be approximated in simulation, are often hard to be precisely
emulated due their physical complexity and interaction with motor drivers, sensors, inner control
loops, among others. Hence, the need to verify the health estimation capability of a controller using
real hardware is of great importance.

The contributions of this paper are two fold:

• We develop a Hardware in the Loop testing architecture to verify actuator health estimation
performance of the adaptive controller with real RWs.

• We highlight the problems encountered during HIL testing of a RW array, and provide solu-
tions and discussion on each.

This paper is organized as follows. First, we provide an overview of the adaptive controller that
is being tested in this HIL set up. Then we present the architecture design of the testbed. The next
sections describe the experimental setup and procedures to integrate each component to realize the
test. Finally, we discussed the results and concluded with future work.

ADAPTIVE ICL CONTROLLER

Since the focus of this paper is to highlight and analyze the HIL testing for this adaptive controller,
this section only briefly overviews the design and architecture of our controller. For further, more
detailed explanation and derivation of the controller and its stability analysis, we refer the reader to
our previous paper.15

The Equations of Motion for the attitude of a spacecraft with N RWs are given as

Jω̇ = −ω × (Jω + JRWGΩ) +GΦu (1)

σ̇ =
1

4

[(
1− σTσ

)
I3 + 2σ× + 2σσT

]
ω, (2)

where ω ∈ R3 is the spacecraft angular velocity expressed in the body coordinate system,
σ ∈ R3 is the vector of Modified Rodrigues Parameters (MRP) that represent the orientation of
the spacecraft with respect to the inertial frame, Ω = [Ω1,Ω2, · · · ,ΩN ]T ∈ RN is a vector con-
taining the N RW angular velocities, u = −JRW Ω̇ = [u1, u2, · · · , uN ]T ∈ RN is the control input
that represents the torque applied by each RW, J ∈ R3×3 is the total inertia matrix, JRW ∈ R>0
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is the inertia of the flywheels about their spin axis, Φ = diag{ϕ1, ϕ2, · · · , ϕN} ∈ RN×N is the
uncertain RW health matrix, G = {ŝ1, ŝ2, · · · , ŝN} ∈ R3×N is the RWA configuration matrix,
and ŝi ∈ R3 is the direction of the ith RW’s spin axis expressed in the body coordinate system. The
matrix Im ∈ Rm×m represents an identity matrix of dimension m × m, and a× ∈ R3×3 is a the
skew-symmetric matrix built with the vector a = [a1, a2, a3]

T ∈ R3.

The designed auxiliary control law ud that stabilize the spacecraft attitude is

ud = ω×(Jω + JRWGΩ)+JR̃ω̇d−Jω̃×R̃ωd+4JB−1

[
−1

4
Ḃω̃ − ασ̇e −Kr − βσe

]
, (3)

where β ∈ R>0 is a constant control gain, α ∈ R3×3 is a symmetric, positive definite control gain
matrix, R̃ ∈ R3×3 is a rotation matrix between the spacecraft desired and body frames, σe ∈ R3 is
the error MRP and r = σ̇e + ασe ∈ R3 is a modified error state.

The torque commands to be sent to the RWs, u, are recovered as

u =
(
GΦ̂

)†
ud, (4)

where (·)† is the Moore-Penrose pseudo-inverse of (·) and Φ̂ can be obtained by numerically inte-
grating the adaptation law given by:

˙̂θ = proj

{
1

4
ΓY T

(
J−1

)T
BTr + ΓK1

Ns∑
i=1

YT
i

(
Jω(t)− Jω(t−∆t) + Ui − Yiθ̂

)}
, (5)

where θ̂ ∈ RN is the estimate of the vector containing RWs’ health factors θ = [ϕ1, ϕ2, · · · , ϕN ]T ,
Γ, K1, ∈ RN×N are constant, positive definite adaptation gain matrices, Ui ∈ R3 and Yi ∈ R3×N

are integrals of input-output data terms, and the matrix B ∈ R3×3 is a matrix used in the MRP
kinematics.16

TESTBED ARCHITECTURE DESIGN

Figure 1 illustrates the overall architecture of the HIL testbed developed for the experiment.
This architecture extends the already tested and proven SIL setup with ROS2 middleware used as
for communication between computers in a local network.17 The HIL testbed includes a Satellite
Simulator implemented in Matlab/Simulink running on a Linux computer, an NVIDIA Jetson Nano
embedded computer hosting various software and algorithms undertest, and the RW testbed, which
consists of hardware components including four Maxon EC 60 flat brushless motors18 emulating
RWs, each controlled by a digital position controller EPOS4 Compact 50/5CAN19communicating
via USB/CAN bus, and an artificial fault injection mechanism used to simulate various RW fault
scenarios.

As shown in Figure 1, the ROS2 nodes in the HIL test setup utilize the publisher/subscriber model.
Satellite Simulator Node (SatSimNode) runs the simulation of the satellite dynamics, environment,
actuator models, and sensor models. The sensor models, including sun sensors, magnetometers,
and gyroscopes, are modeled by adding noise and realistic sampling rates. The noisy sensor out-
puts are processed by the attitude determination block, which employs an Extended Kalman Filter
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Figure 1: Overview of Testbed Architecture.

(EKF) based on multiplicative quaternion20 to estimate the attitude states, i.e., satellite inertial an-
gular velocity ω, and quaternion → MRPs σ. The SatSimNode provides desired attitude states,
satellite configuration parameters, and estimated states data. It also receives the controller outputs
and actuator states data, i.e., RW angular velocity and current measurements back from the testbed.

The embedded computer operates two ROS2 nodes, each designated for a specific function. Using
the estimated attitude states, desired spacecraft states, and satellite configuration, the ControllerN-
ode calculates the required torque command. Depending on the test configuration, the torque com-
mand is converted to angular velocity or current commands. The ControllerNode publishes this
command to the network via a ROS2 topic. The RwNode then subscribes to this command topic
and forwards the commands to the digital controller using a USB/CANopen interface. Simultane-
ously, the RwNode acts as a publisher and delivers angular velocity and current measurement as the
actuator states back to the network, which is received by both the ControllerNode and SatSimNode.
The final step is to create the closed-loop HIL system and ensure synchronization between the sim-
ulation model and the physical hardware.

The testbed is built with a modular design. It is possible to swap in new actuators, sensors, or
embedded computers with minimal changes to the overall architecture. It is flexible to make the
transition between testing modes, from pure simulation, also called Model-in-the-Loop (MIL), to
SIL, or HIL modes. This architecture is scalable to support future upgrades, such as air-bearing
tests, satellite integration and testing campaigns, and comprehensive end-to-end system tests.

EXPERIMENTAL SETUP

Figure 2 shows the experimental setup used to validate the controller and its RW health estima-
tion capability with actual hardware. The NVIDIA Jetson Nano is connected to one digital motor
controller via USB interface, and the remaining motor drivers are interconnected through a CAN
bus, using the CANopen protocol. A dedicated power supply unit is installed to power the elec-
tronics. The Jetson Nano communicates with MATLAB/Simulink wirelessly in a local network and
exchanges data using the ROS2 middleware.

Performing a HIL test introduces a number of complexities that are either ignored or not present
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Figure 2: HIL Experimental Setup

in simulation, one of which is the assumption that all states of the RW are available to the controller,
or whether the inner controller loop of the motor controller is closed via current or angular velocity.
These considerations greatly impact the design of the controller and whether a real-time HIL test is
feasible or representative.

As a first proof of concept, we artificially induce failure through manipulation of the control
command being sent to each RW, as is common practice in many recent literature.21–30 Testing full
failure of the RW is simple, the power stage of the failing RW can be disconnected, whilst other
failures can be induced by manipulating the amount of effort that is sent as command to the motor
controller with respect to the effort output by the main attitude controller. This is normally a scaling
factor that is applied to the required control effort.

EXPERIMENTAL PROCEDURE

The process of transferring a completely simulated system to one where the actuators and sensors
are real hardware connected to the integrated, embedded controller and state estimator is a large
jump to complete altogether. As such, we break down the process of implementing the physical
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hardware in the loop in multiple steps to ensure accuracy and reliability. The first step, as seen in
our previous work15 included the SIL testing of the controller executed on an embedded computer.
In order to completely verify the HIL tests, the breakdown of how we integrated certain components
is shown in Figure 3. After the SIL test, which verifies that the embedded computer can run the
control algorithm accurately and efficiently as compared to the simulation, we begin by adding the
reaction wheels, with their CAN bus motor drivers and integrated sensors in the loop.

Test Config. SatSim
Jetson Nano

RWs Hardware
ControllerNode RwNode

MIL ✔ Ｘ Ｘ Ｘ

SIL ✔ ✔ Ｘ Ｘ

HIL-a Ｘ Ｘ ✔ ✔

HIL-b ✔ Ｘ ✔ ✔

HIL-c ✔ ✔ ✔ ✔

Model Physical

Figure 3: Experimental Procedures

HIL-a: Testing Reaction Wheel Response

Current Commands In order to create the most realistic simulated model of the RW and motor
driver set up, control torque commands calculated by the adaptive controller are passed through a
transfer function that is designed to mimic the behavior of the motor driver and RW operating in
closed-loop torque control. As such, the first test is to pass the control commands, converted to
current via the torque constant for the brushless motor,18 from the simulator to the RW and motor
drivers and then observe their behavior in comparison to the simulated RWs. Hence, the simulation
propagates the equations of motion (EOM) and RW dynamics, with the torque commands being fed
in parallel through the ROS2 network to the real RW and motor drivers, but maintaining the control-
loop closed with the simulated RWs. The built-in current sensor reports back the actual current and
Hall-effect sensor measures angular velocity of each RW.

As the simulation runs, we compare the output torques and angular velocities between the simu-
lated and real RWs to assess the differences between them. Parameters of the RW such as inertia,
mass and torque constant were taken from the datasheet of the brushless motors and included in the
simulated RWs.

The RW motor drivers have two modes of operation, torque (current) command and angular ve-
locity command. In order to reduce complexity and added calculations that may introduce unwanted
behaviors, we decided to control the RW’s based on a given torque command. In order to do this on
the RW hardware, a current command would be delivered to the motor drivers which in turn would
use their internal PID feedback controller to track this command. We derive the current command
from the torque required by the controller
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Icmd = Kt · τcmd (6)

where, Kt is the torque constant of the RW motor, given in the datasheet.

As seen in Figure 4a, the primary issue with this method of control commands is that the RWs
have a current deadband of around 300mA, throughout which any current commanded would result
in no output from the RWs. This is not an uncommon issue but in our case, because the desired
torque commands were generally small and would eventually converge to zero, a majority fell within
this deadband, as such the RWs were unable to actuate. A common solution to this issue is to
kickstart the RWs when the simulation starts to break through the deadband, and although this
momentarily helped alleviate the deadband issue, the motors quickly became unresponsive. Another
solution that proved unsuccessful was to append the command signal with the sign of the command
multiplied by the deadband region, Icmd = Icmd + sign(Icmd) · 300. As evident in Figures 4b this
resulted in large jumping in the RW angular velocity and did not track the simulated angular velocity
closely. As such, our next solution to this problem was to convert the output torque commands of
the controller into angular velocity commands.
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Figure 4: Current commands and angular velocity plots showing the deadband issue when generat-
ing torque commands from the adaptive controller.

Velocity Commands In order to convert the torque commands that are output from the adaptive
controller into velocity commands that are acceptable commands to the RW motor drivers, the
following steps must occur. First the commanded simulated torque for each RW is saturated by the
max torque that is possible by each RW, given in its respective datasheet. Then, the torque command
is divided by the inertia of the wheel to obtain angular acceleration

Ω̇cmd =
τcmd

JRW
, (7)

and the velocity command obtained using the forward-Euler integration algorithm which proved
to be sufficient. Velocity saturation was also applied to ensure commands within the motor specs.
These velocity commands can be tracked by the RWs and do not suffer from the deadband issue.
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To verify the correct operation of the RWs with the velocity commands generated from the sim-
ulator, a similar experiment was performed where the main control loop is still closed with the sim-
ulated RWs that receive torque commands, and the corresponding computed velocity commands
were also sent to the physical RWs. Figure 5 demonstrates that although the measured velocity
signal includes a small amount of noise, its profile closely follows that of the simulated RW.
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Figure 5: Comparison of simulated and physical RWs’ angular velocities under angular velocity
command.

HIL-b: Adding Physical RWs in the Main Control Loop

Once it was verified that the simulated and real RWs were behaving similarly for given control
commands, the next step in achieving a complete HIL test was to feed the angular velocities and
angular accelerations from the real RWs into the simulation, as required to propagate the EoMs as
in Equation (1). This was a major step in the process as it introduced a number of issues that were
required to be addressed to bridge the sim-to-real gap.

Dealing with noisy measurements from the RWs’ angular velocities and currents, especially ve-
locity measurements near zero speed, a known issue related to Hall-effect sensors,? added to the
need of computing the corresponding angular accelerations to be able to propagate the EoMs, be-
came an important issue. We attempted two approaches to compute the angular acceleration (a)
by directly converting the RWs’ current measurements to angular acceleration and (b) through nu-
merical differentiation of the velocity measurements, then using low-pass filters to smooth out the
signals. For the approach (a), we found a similar issue earlier with the deadband of the current mea-
surement, which resulted in an incorrect mapping between current and angular acceleration. For
approach (b), it introduced a phase shift (delay) in the signal, which is quite significant to be fed
into the EoMs, resulting in an unstable system.

To mitigate the issue with noisy sensor data, we fed the calculated velocities and angular ac-
celerations into the satellite’s EoMs instead of actual accelerations obtained from measurements.
As a result, current measurements were excluded from the setup, and only velocity measurements
were used to interface with the simulator. Because the control and adaptation laws under test only
require estimated satellite states and RWs’ angular velocity measurements as inputs (as shown in
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Equations (3), and (5)), and EoMs propagation is only required for numerical simulation and not
for real satellite operation, the proposed data exchange remains representative.

However, the disconnection between the measured (experienced) RWs’ angular velocities, and
the calculated angular accelerations being fed into the EoMs, prevented us from physically inducing
RW failures or degradation. In order to physically induce failure on a RW, an angular acceleration
profile consistent with the measurement would be required. The need of angular acceleration is only
present in this specific HIL test that requires EoMs propagation. However, in a more comprehensive
test (e.g., tests involving a spherical air-bearing testbed), no artifacts would be required to construct
RW angular acceleration and the framework proposed here remains fully applicable for physically
induced failures. Finally, to address the increased noise around zero RW speed, RWs were spun-up
to an initial Ω = [100,−100,−100, 100] rad/s. With these adjustments, we achieved a closed-loop
operation between the SatSim and the physical RWs.

HIL-c: Adding Embedded Computer in the Loop

In this stage, we aim to ensure that the controller is on the embedded hardware. This involved two
additional tasks: (a) To check that the controller still provides correct output even when it receives
the noisy velocity measurements, and (b) To ensure that the controller node correctly implements
failure induction logic, i.e., computes the correct RW commands to be sent to the RW.

Up to this point, RWs are still being commanded by the Satellite Simulator. As an intermediate
step we executed the controller block on the Satellite Simulator and, in parallel, on the Jetson Nano
embedded computer to assess their performance. Although the ControllerNode on the Jetson Nano
had already been validated during the SIL stage, the main difference now is the noisy data mea-
surements from the physical RWs, and newly incoporated satellite state estimates from an attitude
determination EKF.

The estimated states from the EKF (computed in Satellite Simulator) and real-time RW angular
velocity measurements were sent to the ControllerNode on the Jetson Nano, and its outputs are
transmitted back to the SatSimNode for comparison and verification. Once validated, we replace
SatSim’s RW commands with the commands calculated on the Jetson Nano to fully execute the
control computations on the embedded computer.

To validate the controller in this final setup, we employed the same test scenario from our pre-
vious work. In this scenario, the satellite begins by aligning itself with the Earth-Centered Inertial
(ECI) frame and then alternates between its initial orientation and nadir-pointing three times. The
simulation scenario lasts for 4000 seconds, during which the satellite switches its orientation every
12 minutes, then maintains nadir-pointing after 2000 seconds. The only changes we made to the
simulation parameters were to increase the degraded wheel factor from 0 to 0.5 to induce a partial
failure instead and reduce KICL gain by an order of magnitude, i.e., KICL = 1. The gain ad-
justment was necessary to avoid demanding torque commands that exceed the limits of the RWs,
which initially caused the simulator and the ControllerNode on the Jetson Nano to stop once the
ICL term was activated. This highlights the gap in sim-to-real, where sometimes control torques
that are feasible in simulation do not mean that they can be replicated in a real test.

RESULTS

The satellite was able to follow its guidance commands throughout the simulation as evident
in Figure 6a and Figure 6b. Figure 7 shows the RW health estimation performance, i.e., θ̂. The

9



lambda λ plot represents the verifiable excitation level due to the input-output data accumulated
by the system.15 Although the lambda λ reached the defined threshold value earlier than in purely
simulated tests, the health estimation θ̂ can be seen to converge to its true value. Because we reduce
the gain KICL to avoid the simulation from stopping, it affects the convergence rates, taking more
time to converge. As the satellite perform more maneuvers, the action of the gradient-based term
(i,e., first term in Equation (5)) helped move it closer to its true value faster.
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Figure 6: Performance of the Attitude Tracking Accuracy.
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Figure 7: RW Health Estimation with RW hardware in the loop.

Two consistent behaviors with prior results were observed. The estimation accuracy for degraded
RW#3 is better than for the non-degraded wheels (steady-state error) and that there was overshoot
on the estimation for RW#3. The steady state error was partly due to the numerical integration errors
from the forward-Euler integration algorithm used to compute the estimated value θ̂ via integration
of Equation (5), as well as the fact that in the development of the controller some parts of the
simulation model, such as attitude perturbations were neglected, leading to a disparity between the
two.
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Figure 8 shows the angular velocity measurements from the RW. Due to internal low-pass filtering
implemented in the digital motor controller, the measurement noise was observed only at low-speed
regions. Despite the measurement noise, it has minimal impact on the performance of the attitude
tracking and estimation of the controller, as seen in earlier plots.
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Figure 8: RW Angular Velocity Measurement.

Table 1 reports the performance of the Jetson Nano embedded computer during the HIL test.
The controller executes the loop in 3.86 ms on average with a worst case of 6.62 ms, which is
well below the 100 ms of the control loop limits. The average CPU load across the four cores is
8.76%, and the maximum value reached 36.70% at the start of the HIL test, which is an expected
behavior during the system initialization. Memory usage appears to show a high value of 86.13%
on average. However, when we conducted an additional measurement of memory usage while the
system is idle, it reported similar value which suggest that there may be some background services
running. The high memory usage value may not representative of what actually being consumed by
the ROS2 nodes themselves and additional test and analysis are needed to get better understanding
of the memory usage by the nodes.

Table 1: Jetson Nano Performance Metrics.

Metric Execution Time (ms) CPU Load (%) Memory Usage (%)
Average 3.86 8.76 86.13

Maximum 6.62 36.70 87.40
Std Dev 0.20 2.90 0.26

FUTURE WORK

Given the results and lessons learned in this HIL testing, the avenues for future work are highly
promising. The next immediate step in validating the adaptive controller in a simulation setup that
mimics its true mission profile as close as possible is to transition the RW hardware setup from a flat
test bench array to one where the RWs are placed in the design configuration array inside a mock
satellite on an rotational air bearing. This setup would alleviate the problematic issues caused by the
EoM in the simulation, allowing for a more comprehensive and thorough analysis of the controller.
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With this setup another possibility for future work includes moving the EKF that is currently
hosted on the simulation computer along with the attitude determination node onto the embedded
computer, as it would be on a real mission. This testing would ensure all necessary communication
and computations that would be required by the embedded computer would be possible without
causing too much computational burden.

Finally, with the EoM now being omitted from the simulation setup, we would then be able to
physically induce failures to the RW again to an even more realistic scenario to test the learning
capability of the controller. With this component of the HIL test, performed on the air bearing
testbed, full validation of the adaptive controller would be achieved.

CONCLUSION

In this paper, we validated an adaptive satellite attitude controller capable of estimating the health
level of its RWs through the HIL test that includes an embedded computer and physical RW hard-
ware with artificially induced failure. Using the HIL testbed, we demonstrated that the proposed
adaptive controller performed considerably well under hardware constraints, with noisy measure-
ments from the sensor. In addition, through the test, we have established a baseline validation of
our envisioned modular HIL testbed design that is flexible and scalable. Despite several issues en-
countered during the development of the HIL testbed, the lessons learned are valuable as we move
towards the next step involving a full air-bearing testbed experiment and other comprehensive end-
to-end system tests in the future. This work will contribute to advancing the state-of-the-art ground
hardware testing of fault-tolerant spacecraft attitude controllers.
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