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I. Introduction
Reaction wheels are widely used as the main actuators for spacecraft attitude control. However, reaction wheels have

mechanical moving parts that operate in a harsh space environment; and their performance degrades over time [1–5].

A range of solutions to address uncertainties and faults in spacecraft have been explored, including the sliding-mode

control [6], observer-based [7], adaptive controllers [8–10], and neural network-based methods [11]. The advantage of

adaptive controllers is their ability to compensate for uncertainties in the system dynamics, whilst maintaining control

over the system in a computationally inexpensive manner. Neural networks are capable of learning uncertain parameters,

but their increased size, complexity, and learning based on iterative algorithms often make it difficult to integrate

them into stability analyses and implement them on real-time spacecraft hardware. As such, methods utilizing Neural

Networks should account for this limitation in their development.

In our prior work [10], we designed an adaptive controller that can simultaneously estimate and compensate for the

degradation level of the RWs while maintaining accurate attitude tracking when there are RW failures or degradation.

Under the assumption of a constant or slowly varying health factor, our method involved a Lyapunov-based adaptive

control system with an integral concurrent learning (ICL)-based update law that ensures convergence of the estimated

RW health once a sufficient Finite Excitation (FE) condition is met. Despite promising results, the main limitation

was the constant or slowly varying health parameters assumption. This assumption limited the controller’s uncertain

parameter estimation performance in scenarios with a time-varying health change. To mitigate the effect of this

assumption, a regular reset of the ICL term was proposed to allow the controller collect new data periodically and

provide a more accurate fault estimation.

This work addresses the aforementioned problem by proposing the use of Radial Basis Function Neural Networks

(RBFNN) to approximate a nonlinear function that describes the RWs’ health degradation level, relaxing the constant

health parameters assumption whilst still maintaining stable attitude tracking. Using RBFNN, provides the controller’s

with the ability to learn more complex fault profiles influenced by factors such as wheel speed, spacecraft angular

velocity, time, and internal winding temperature [1].
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The contributions of our work are as follows:

1) We develop a RBFNN based adaptive controller that can simultaneously approximate the complex, nonlinear

health degradation profile of the RW’s whilst maintaining stable atittude tracking. This relaxes the constant-health

assumption of our previous work [10].

2) Our proposed controller demonstrates the ability to automatically demand less control torques from damaged

wheels, leading to preservation of the RW health, extending mission life time.

3) The proposed controller ensures CL-based online convergence of the Neural Network weights and biases for the

health prediction under verifiable finite excitation.

This paper is outlined as follows. The first section derives the spacecraft dynamics and RBFNN-based fault model.

The next two sections present the design of the proposed RBFNN-based controller and the stability analysis. The

following section discusses the simulation results. Finally, the conclusion and future work are described.

II. Spacecraft Attitude Dynamics
Given the attitude equations of motions (EoMs) for a Spacecraft with 𝑁 RWs

𝐽 ¤𝝎 = −𝝎 × (𝐽𝝎 + 𝐽𝑅𝑊𝐺𝛀) − 𝐽𝑅𝑊𝐺Φ ¤𝛀 (1)

¤𝝈 =
1
4

[(
1 − 𝝈𝑻𝝈

)
𝐼3 + 2𝜎× + 2𝝈𝝈𝑻

]
𝝎, (2)

where 𝝎 ∈ R3 is the spacecraft inertial angular velocity expressed in the body frame, 𝝈 ∈ R3 are the Modified Rodrigues

Parameters (MRP) representing the attitude of the spacecraft with respect to the inertial frame, 𝛀 ∈ R𝑁 contains the

angular velocity of the 𝑁 reaction wheels, 𝐽 ∈ R3×3 is the total inertia matrix, 𝐽𝑅𝑊 ∈ R>0 is the inertia of the flywheels

about their spin axis, Φ = diag{𝜙1, 𝜙2, · · · , 𝜙𝑁 } ∈ R𝑁×𝑁 is the uncertain RW health matrix, 𝐺 ∈ R3×𝑁 is the RW

array configuration matrix.

From the Eq. (1), we rewrite the term −𝐽𝑅𝑊𝐺Φ ¤𝛀 as

−𝐽𝑅𝑊𝐺Φ ¤𝛀 = −𝐺 diag (𝝉𝑹𝑾 )𝚽𝒗𝒆𝒄 , (3)

where 𝝉𝑹𝑾 = 𝐽𝑅𝑊 ¤𝛀, and 𝚽𝒗𝒆𝒄 = [𝜙1, 𝜙2, · · · , 𝜙𝑁 ] ∈ R𝑁 is the vector of reaction wheel “health” parameters.

Instead of assuming that 𝚽𝒗𝒆𝒄 is constant, we invoke the universal function approximation theorem of Neural

Networks[12] to approximate 𝚽𝒗𝒆𝒄 with RBFNNs. We treat each individual wheel-health factor 𝜙𝑖 as an unknown

nonlinear function and estimate it with its own RBFNN due to the fact that approximating the nonlinear health profiles of

all wheels with one RBFNN model exponentially increases the required number of RBF’s to span the entire feature space.
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As each health profile is independent of one another and only dependent on the characteristics of the corresponding

wheel, creating one RBFNN for each RW instead of coupling reduces the required number of RBF’s from 𝑀𝑚 RBF’s to

𝑀 · 𝑚. Where 𝑀 ∈ Z>0 is the chosen number of RBFs to span each input feature’s range, and 𝑚 ∈ Z>0 is the number

of features that affect a RW’s health.

The choice of using an RBFNN over other Neural Network (NN) structures, such as a Multilayer Perceptron (MLP),

is due to a key component in CL-based adaptation law design that requires the uncertain terms to be expressed in a form

that is linear in the uncertain parameters. The structure of RBFNNs is suitable for this purpose when weights and biases

are their only tunable parameters. The use of a MLP would result in some tunable parameters confined within nonlinear

activation functions, complicating the derivation of formal convergence guarantees of the uncertain NN parameters.

Each RW-health factor 𝜙𝑖 can then be expressed as

𝜙𝑖 = 𝑊𝑇
𝑖 𝑆𝑖 (𝑥𝑖) + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁 (4)

where 𝜀𝑖 is the function approximation error (unknown, bounded and in general smaller as the size of the network

increases), 𝒙̄𝒊 = [𝒙𝑇𝒊 , 1]
𝑇 , 𝒙𝒊 ∈ R𝑑 is the vector of inputs (features) to the NN, 𝑆𝑖 (𝑥𝑖) ∈ R𝑀𝑖+1 is the vector of nonlinear

activation functions (including the appended unity to account for the bias terms), 𝑀𝑖 ∈ Z>0 is the number of neurons

assigned to wheel 𝑖, and𝑊𝑖 ∈ R𝑀𝑖+1 contains weights and biases of the 𝑖-th RBFNN.

For our purposes, the term 𝑊𝑇
𝑖
𝑆𝑖 (𝑥𝑖) represents an RBFNN assigned to RW 𝑖 with 𝑀𝑖 neurons, where the vector

𝑊𝑖 contains the NN’s weights and biases between the hidden and output layer. The vector of RBFs activation functions

𝑆𝑖 (𝑥𝑖) with its 𝑗 𝑡ℎ entry defined as

𝑆𝑖, 𝑗 (𝒙̄) = exp

(
−

(
𝒙̄𝒊 − 𝜇𝑖, 𝑗

)𝑇 (
𝒙̄𝒊 − 𝜇𝑖, 𝑗

)
𝜂2
𝑖, 𝑗

)
, (5)

where 𝑗 ∈ Z>0 denotes the 𝑗 𝑡ℎ neuron index for wheel 𝑖, 𝜇𝑖, 𝑗 ∈ R𝑑+1 is the “position" of the hidden node or neuron’s

RBF in the feature/input space, and 𝜂𝑖, 𝑗 ∈ R>0 is the “width” of the 𝑗 𝑡ℎ RBF.

For the 𝑖𝑡ℎ wheel, the term𝑊𝑇
𝑖
𝑆𝑖 is a scalar, and can therefore be transposed as

𝑊𝑇
𝑖 𝑆𝑖 (𝑥𝑖) = 𝑆𝑇𝑖 (𝑥𝑖)𝑊𝑖 , 𝑖 = 1, . . . , 𝑁, (6)

Stacking all outputs into a vector, we obtain 𝚽vec as
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Fig. 1 RBFNN with Gaussian activation centered at 𝜇𝑖, 𝑗 and width 𝜂𝑖, 𝑗 .

𝚽vec =


𝑆𝑇1𝑊1

...

𝑆𝑇
𝑁
𝑊𝑁


+ 𝝐 =



𝑆𝑇1 0 · · · 0

0 𝑆𝑇2 · · · 0
...

...
. . .

...

0 0 · · · 𝑆𝑇
𝑁





𝑊1

𝑊2

...

𝑊𝑁


+ 𝝐 (7)

where the 𝑖𝑡ℎ contains the transposed activation vector 𝑆𝑇
𝑖
= [ 𝑆𝑖,1(𝑥𝑖) . . . 𝑆𝑖,𝑀𝑖

(𝑥𝑖) 1 ] and zeros elsewhere.

Eq. (7) can be further expressed with the simplified short-hand notation

𝚽vec = b̃lkdiag
(
𝑆𝑇1 , . . . , 𝑆

𝑇
𝑁

)
𝑾 + 𝝐 , (8)

where 𝑾 =
[

W1
𝑇 W2

𝑇 . . . WN
𝑇
]𝑇 and 𝝐 = [𝜀1, . . . , 𝜀𝑁 ]𝑇

By plugging-in Eq. (8) into Eq. (3) yields

−𝐽𝑅𝑊 𝐺 Φ ¤Ω = −𝐺 diag
(
𝝉𝑅𝑊

) (
b̃lkdiag

(
𝑆𝑇1 , . . . , 𝑆

𝑇
𝑁

)
W + 𝝐

)
, (9)

where 𝝉𝑅𝑊 ∈ R𝑁 .

We define the regressor matrix Ψ ∈ R3×(𝑀+1)𝑁 as

Ψ = −𝐺 diag
(
𝝉𝑅𝑊

)
b̃lkdiag

(
𝑆𝑇1 , . . . , 𝑆

𝑇
𝑁

)
, (10)
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Eq. (9) can be rewritten as

−𝐽𝑅𝑊𝐺Φ ¤𝛀 = Ψ W − 𝐺diag(𝝉𝑹𝑾 )𝝐 = Ψ W + 𝐺diag(𝝉𝑹𝑾 )𝝐 (11)

where the term involving 𝝐 is rewritten with the sign flipped, so the residual remains positive.

III. Controller Design

A. Control Objective

The objective is to design an adaptive controller that guarantees attitude tracking and convergence of estimates of

the RBFNN’s weights/biases Ŵ𝑇 to their true values W𝑇 . As opposed to directly learning the RWs health parameters

𝜙1, 𝜙2, · · · , 𝜙𝑁 , we propose a Concurrent Learning (CL)-based adaptation law to ensure convergence of the RBFNN’s

weights and biases.

Using Eq. (11), the dynamics in Eq. (1) can be expressed as

𝐽 ¤𝝎 = −𝝎 × (𝐽𝝎 + 𝐽𝑅𝑊𝐺𝛀) + Ψ W + 𝐺diag(𝝉𝑹𝑾 )𝝐 (12)

¤𝝈 =
1
4

[(
1 − 𝝈𝑻𝝈

)
𝐼3 + 2𝜎× + 2𝝈𝝈𝑻

]
𝝎 (13)

Let us define the weights/biases estimation error as W̃ = W − Ŵ, and the EoMs can be rewritten as

𝐽 ¤𝝎 = −𝝎 × (𝐽𝝎 + 𝐽𝑅𝑊𝐺𝛀) + Ψ W̃ + Ψ Ŵ + 𝐺diag(𝝉𝑹𝑾 )𝝐 (14)

¤𝝈 =
1
4

[(
1 − 𝝈𝑻𝝈

)
𝐼3 + 2𝜎× + 2𝝈𝝈𝑻

]
𝝎 (15)

Assumption 1. The spacecraft carries an attitude-determination system capable of delivering the angular velocity 𝝎

and attitude 𝝈 measurements/estimates in real-time.

Let us define the attitude error MRP 𝝈𝑒 ∈ R3 and the relative angular velocity 𝝎̃ = 𝝎 − 𝑅̃𝝎𝑑 ∈ R3 where 𝑅̃

represents the rotation matrix between body and the desired frames and is defined as

𝑅̃ = 𝐼3 +
8𝝈×

𝒆 𝝈
×
𝒆 − 4(1 − 𝝈𝑇

𝒆 𝝈𝒆) 𝝈×
𝒆

(1 + 𝝈𝑇
𝒆 𝝈𝒆)2 . (16)

The attitude error and the relative angular velocity obeys the following kinematics equation [13]

¤𝝈𝑒 =
1
4𝐵 𝝎̃, (17)
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with 𝐵 =
(
1 − 𝝈𝑇

𝒆 𝝈𝒆
)
𝐼3 + 2𝝈×

𝒆 + 2𝝈𝒆𝝈
𝑇
𝒆 .

The attitude control objective is achieved when

∥𝝈𝒆 ∥ → 0, and ∥𝝎̃∥ → 0 ⇒ ∥ ¤𝝈𝒆 ∥ → 0. (18)

which implies that

𝑅̃ → 𝐼3, as 𝑡 → ∞. (19)

B. Control Development

We introduce the auxiliary error 𝒓 ∈ R3 as

𝒓 = ¤𝝈𝒆 + 𝛼𝝈𝒆, (20)

where 𝛼 ∈ R3×3 is a symmetric, positive definite control gain matrix. The time derivative of the Eq. (20) can be

obtained as,

¤𝒓 =
1
4
¤𝐵𝝎̃ + 1

4
𝐵

(
¤𝝎 − 𝑅̃ ¤𝝎𝒅 − ¤̃𝑅𝝎𝒅

)
+ 𝛼 ¤𝝈𝒆, (21)

with ¤𝐵 =
[
−2𝝈𝑻

𝒆 ¤𝝈𝒆 𝐼3 + 2 ¤𝜎×
𝑒 + 4

(
¤𝝈𝒆𝝈

𝑻
𝒆

) ]
.[13]

Using the dynamics in Eq. (14), and the fact that ¤̃𝑅 = −𝜔̃× 𝑅̃, we obtain

¤𝒓 =
1
4
¤𝐵 𝜔̃ + 1

4
𝐵
[
𝐽−1 (−𝜔 × (𝐽𝜔 + 𝐽𝑅𝑊𝐺Ω) + Ψ W̃ + Ψ Ŵ + 𝐺diag(𝜏𝑅𝑊 ) 𝝐 − 𝑅̃ ¤𝜔𝑑 + 𝜔̃× 𝑅̃𝜔𝑑

]
+ 𝛼 ¤𝜎𝑒 . (22)

Since the term Ψ W contains the control input 𝝉𝑹𝑾 , i.e. RW torques, we design the the auxiliary control signal

𝒖𝒅 ∈ R3 as

𝒖𝒅 = 𝝎 × (𝐽𝝎 + 𝐽𝑅𝑊𝐺𝛀) + 𝐽𝑅̃ ¤𝝎𝒅 − 𝐽𝜔̃× 𝑅̃𝝎𝒅 + 4𝐽𝐵−1 [
− 1

4
¤𝐵𝝎̃ − 𝛼 ¤𝝈𝒆 − 𝐾 𝒓 − 𝛽𝝈𝒆

]
, (23)

where 𝐾 ∈ R3×3 and 𝛽 ∈ R>0 are constant, symmetric, positive definite control gains.

Based on the Eq. (22) and (23), we propose an adaptation law with a gradient-based term and a CL term that collects

input-output data [14]. The adaptation law for the RBFNN weight and bias estimates is proposed as

¤̂
𝑊 = proj

{
1
4Γ Ψ𝑇 (𝐽−1)𝑇𝐵𝑇 𝒓 + Γ𝐾𝐶𝐿

𝑁𝑠∑︁
𝑖=1

Ψ𝑇
𝑖

(
𝐽 ¤𝝎𝑖 + 𝝎𝑖 ×

(
𝐽𝝎𝑖 + 𝐽𝑅𝑊𝐺𝛀𝑖

)
− Ψ𝑖 Ŵ

)}
(24)

where Γ, 𝐾𝐶𝐿 ∈ R(𝑀+1)𝑁×(𝑀+1)𝑁 are symmetric, positive-definite adaptation gain matrices, and proj{·} is a projection

algorithm used to confine the Ŵ to a user-defined bounds [15].

6



The commanded torque in the body frame 𝒖𝒅 is mapped to the torque produced by the reaction wheels through the

following relationship

𝐺 Φ̂ 𝝉𝑅𝑊 = 𝒖𝑑 , (25)

where Φ̂ = diag(𝚽̂𝑣𝑒𝑐) is the estimate of the actual wheel-health factor Φ.

We can obtain the actual RW control input 𝝉𝑅𝑊 as

𝝉𝑅𝑊 =
(
𝐺Φ̂

)†
𝒖𝑑 (26)

where (·)† is the Moore–Penrose pseudoinverse.

Assumption 2. There exists a finite time 𝑇 > 0 such that

𝜆min

(
𝑁𝑠∑︁
𝑖=1

Ψ𝑇
𝑖 Ψ𝑖

)
≥ 𝜆̄, (27)

where 𝜆𝑚𝑖𝑛{·} denotes the minimum eigenvalue of {·} and 𝜆̄ ∈ R>0 is a user-defined threshold value.

IV. Stability Analysis
Let us define the composite state vector 𝒛 = [𝒓𝑇 ,𝝈𝑇

𝑒 , 𝑾̃
𝑇 ]𝑇 ∈ R 6+(𝑀+1)𝑁 and divide the analysis into two parts:

the first part shows the stability of the closed-loop dynamics at time 𝑡 < 𝑇 , where the finite excitation condition is not

yet satisfied; and the second part considers the stability analysis for time 𝑡 ≥ 𝑇 .

Consider the following Lyapunov candidate function

𝑉 (𝑡) = 1
2
𝒓𝑇 𝒓 + 𝛽

2
𝝈𝑇
𝑒 𝝈𝑒 +

1
2
𝑾̃𝑇 Γ−1 𝑾̃ . (28)

There exist two positive constants 𝜅, 𝜅 such that,

𝜅∥𝒛∥2 ≤ 𝑉 (𝑡) ≤ 𝜅∥𝒛∥2. (29)

Taking the time-derivative of 𝑉 , and plugging-in Eqs. (22) and (23), we get

¤𝑉 (𝑡) = 𝒓𝑇
(

1
4 𝐵 𝐽

−1 (Ψ 𝑾̃ + 𝐺diag(𝝉𝑹𝑾 )𝝐) − 𝐾 𝒓
)
− 𝛽𝝈𝑇

𝑒 𝛼𝝈𝑒 − 𝑾̃𝑇 Γ−1 ¤̂𝑾 . (30)

Using Equations (13) and (24), the adaptation law can be expressed in its equivalent analytical form
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¤̂𝑾 = proj
{

1
4 Γ Ψ𝑇 (𝐽−1)𝑇𝐵𝑇 𝒓 + Γ 𝐾𝐶𝐿

𝑁𝑠∑︁
𝑖=1

Ψ𝑇
𝑖 Ψ𝑖 𝑾̃ + Ψ𝑇

𝑖 𝐺diag(𝝉𝑹𝑾 ,𝒊)𝝐𝑖
}
. (31)

Plugging the adaptation law into Eq. (30), we obtain the expression for ¤𝑉 as

¤𝑉 (𝑡) = − 𝒓𝑇𝐾 𝒓 − 𝛽𝝈𝑇
𝑒 𝛼𝝈𝑒 − 𝑾̃𝑇𝐾𝐶𝐿

𝑁𝑠∑︁
𝑖=1

Ψ𝑇
𝑖 Ψ𝑖𝑾̃

− 𝑾̃𝑻𝐾𝐶𝐿

𝑁𝑠∑︁
𝑖=1

Ψ𝑇
𝑖 𝐺diag(𝝉𝑹𝑾 ,𝒊)𝝐𝑖 + 𝒓𝑇

( 1
4 𝐵 𝐽

−1 𝐺diag(𝝉𝑹𝑾 )𝝐
)
. (32)

A. Part I: Pre-finite-excitation phase

Theorem 1. If the FE condition is not yet satisfied (i.e., 0 ≤ 𝑡 < 𝑇), the tracking-error state 𝒚 = [𝒓𝑇 , 𝝈𝑇
𝒆 ]𝑇 ∈ R6 is

ultimately bounded such that

∥𝒚(𝑡)∥ ≤
√︄
𝛾

𝛾
∥𝒚(0)∥ exp

(
− 𝜂

2 𝛾
(𝑡 − 𝑡0)

)
+

√︄
𝑏̄ − 𝑏
𝛾

+
√︄
𝑐 𝛾

𝜂 𝛾
𝑡0 ≤ 𝑡 < 𝑇. (33)

Proof. Consider the following tracking-error states 𝒚 = [𝒓𝑇 , 𝝈𝑇
𝒆 ]𝑇 . There exists bounding constants 𝛾, 𝛾, 𝑏, 𝑏 ∈ R>0

such that

𝛾 ∥𝒚∥2 + 𝑏 ≤ 𝑉 (𝑡) ≤ 𝛾 ∥𝒚∥2 + 𝑏. (34)

Before time 𝑡 = 𝑇 , the Eq. (32) can be upper bounded

¤𝑉 (𝑡) ≤ −𝜆min{𝐾}∥𝒓∥2 − 𝛽𝜆min{𝛼} ∥𝝈𝑒∥2 + ∥𝒓∥ 𝜖1 + 𝜖2. (35)

where 𝜖1, 𝜖2 ∈ R>0 are constant bounds for terms involving the RBFNN approximation error such that




 1
4𝐵 𝐽

−1𝐺diag(𝝉𝑹𝑾 )𝝐



 ≤ 𝜖1,






𝑾̃𝑇𝐾𝐶𝐿

𝑁𝑠∑︁
𝑖=1

Ψ𝑇
𝑖 𝐺diag(𝝉𝑹𝑾 ,𝒊)𝝐𝑖






 ≤ 𝜖2, (36)

where the following facts were used: 𝑾̂ is bounded due to the projection algorithm in Eq. (31), the applied RW torques

𝝉𝑅𝑊 are bounded due to the spacecraft+RWs being a closed system exchanging angular momentum, 𝐵 is bounded by

a constant due to the use of the MRP short rotation, i.e., ∥𝝈𝒆 ∥ ≤ 1 [13, 16], and RBF activation functions in Ψ are

bounded by definition.
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Applying Young’s inequality as ∥𝒓∥ 𝜖1 ≤ 1
2 ∥𝒓∥

2 + 1
2 𝜖

2
1 , yields the expression for ¤𝑉 (𝒚)

¤𝑉 (𝑡) ≤ −𝜆min{𝐾}∥𝒓∥2 − 𝛽 𝜆min{𝛼} ∥𝝈𝑒∥2 + 1
2 ∥𝒓∥2 + 1

2 𝜖
2
1 + 𝜖2 (37)

≤ −
(
𝜆min{𝐾} − 1

2
)
∥𝒓∥2 − 𝛽 𝜆min{𝛼} ∥𝝈𝑒∥2 + 𝑐 (38)

with 𝑐 = 1
2 𝜖

2
1 + 𝜖2.

Then, ¤𝑉 (𝑡) can be expressed as

¤𝑉 (𝑡) ≤ −𝜂 ∥𝒚∥2 + 𝑐, (39)

with 𝜂 = min
{
𝜆min{𝐾} − 1

2 , 𝛽 𝜆min{𝛼}
}
∈ R>0. Using the upper bound of the Eq. (34), we replace ∥𝒚∥2 with

(𝑉 (𝑡) − 𝑏̄)/𝛾, and rewrite ¤𝑉 (𝑡) as

¤𝑉 (𝑡) ≤ −𝜂
𝛾
𝑉 (𝒚) +

(
𝜂𝑏̄

𝛾
+ 𝑐

)
. (40)

By Comparison Lemma, we obtain the following

𝑉 (𝑡) ≤
(
𝑉 (𝑡0) − 𝑏̄ −

𝑐𝛾

𝜂

)
exp

(
−𝜂
𝛾
𝑡

)
+ 𝑏̄ + 𝑐𝛾

𝜂
𝑡0 ≤ 𝑡 < 𝑇. (41)

Using the bounds in Eq. (34), yields the upper bound for ∥𝒚(𝒕)∥ in Eq. (33), where the tracking error vector 𝒚

decays with the rate of 𝜂/(2𝛾) until it reaches the bound
√︃
(𝑏̄ − 𝑏)/𝛾 +

√︃
𝑐 𝛾/(𝜂 𝛾).

B. Part II: Post-finite-excitation phase

Theorem 2. Once the FE condition is satisfied, the composite error state 𝒛 = [𝒓𝑇 ,𝝈𝑇
𝑒 , 𝑾̃

𝑇 ]𝑇 converges exponentially

until it reaches a bound whose radius depends on the RBFNN approximation error. 𝒛(𝑡) is expressed as

∥𝒛(𝑡)∥ ≤
√︄
𝜅

𝜅
∥𝒛(𝑇)∥ exp

(
− 𝜁

2 𝜅
(𝑡 − 𝑇)

)
+

√︄
𝑐 𝜅

𝜁 𝜅
𝑡 ≥ 𝑇. (42)

where 𝜁 = min
{
𝜂, 𝜆min

(
𝐾𝐶𝐿

∑𝑁𝑠

𝑖=1 Ψ
𝑇
𝑖
Ψ𝑖

)}
∈ R>0.

Proof. With the finite excitation condition satisfied (𝑡 ≥ 𝑇), the matrix
∑𝑁𝑠

𝑖=1 Ψ
𝑇
𝑖
Ψ𝑖 becomes positive definite. Then, the

expression for ¤𝑉 (𝑡) can be rewritten as

¤𝑉 (𝑡) ≤ −𝜁 ∥𝒛∥2 + 𝑐. (43)
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Using the upper bound from the Eq. (29), we rewrite the expression in terms of 𝑉 (𝑡)

¤𝑉 (𝑡) ≤ − 𝜁
𝜅
𝑉 (𝑡) + 𝑐. (44)

Similarly, by comparison Lemma, we obtain the expression

𝑉 (𝑡) ≤
(
𝑉 (𝑇) − 𝑐𝜅

𝜁

)
exp

(
− 𝜁
𝜅
(𝑡 − 𝑇)

)
+ 𝑐𝜅

𝜁
𝑡 ≥ 𝑇. (45)

Applying the quadratic bounds from Eq. (29), for 𝑡 ≥ 𝑇 , we obtain Eq. (42). The finite excitation results in the

exponential decay of both tracking and weight-estimation error to reach the bound
√︁
𝑐 𝜅/(𝜁 𝜅)

V. Simulation
The following section describes the simulation setup to validate the proposed controller’s capabilities of maintaining

the attitude tracking while simultaneously learning the weight-biases of the RBFNN, resulting in the estimation of the

health factor of each individual wheel. The setup includes the construction of the temperature-driven health model,

where the RW health factor is modeled to depend on the winding temperature of the wheel, and we assume that the

controller has access to measurements of the winding temperature of each RW. The RW winding temperature is modeled

with a first-order energy-balance ODE adopted from Basilisk’s motorThermal module documentation [17]

¤𝑇𝑤,𝑖 = −𝜆𝑇,𝑖 (𝑇𝑤,𝑖 − 𝑇env) + 𝛾𝑇,𝑖 ∥𝜏𝑖 Ω𝑖 ∥, (46)

where 𝜆𝑇 is the cooling rate, 𝛾𝑇 is the heating rate, 𝜏 is the torque applied to the wheel, Ω is the angular velocity of the

wheel, 𝑇env is the ambient temperature. The coefficients 𝜆𝑇 and 𝛾𝑇 are obtained based on the thermal properties from

the datasheet of the Maxon brushless motor EC-60[18]. To simulate the faulty wheel, the degraded RW is assigned

a lower, less effective cooling rate and a higher heating rate (i.e, having lower efficiency). The ambient temperature

𝑇env is modeled as a sine wave with a 90-minute period that mimics the orbital day-night cycling, which is standard for

first-order lumped spacecraft thermal models[19]. The bias temperature 34◦C was chosen as a common operating bus

temperature of the spacecraft, and the amplitude ±20◦C was selected to create some variation of temperature for the

healthy wheel that is within their safe operating range[20].

Each wheel-health factor is modeled to depend on the winding temperature of the RW through the following

expression,

𝜙𝑖 = exp
[
−𝛼 𝑧2

𝑖

]
, 𝑧𝑖 =

max
(
𝑇𝑤,𝑖 − 𝑇nom, 0

)
𝑇max − 𝑇nom

, (47)

and is modeled based on the physics-of-failure (PoF) reliability handbooks [21, 22] and related study[1]. Table 1 shows
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the parameters chosen to build the wheel-health factor expression. As the wheel overheats, it drives the health factor

𝜙 close to zero, which lowers the effective torque available from the wheel. The health-map gain 𝛼 controls how

much health is left when the temperature reaches the hot-case limit. The gain 𝛼 is set to three so that it outputs the

wheel-health factor of only 5% when the winding temperature reaches the limit. The maximum temperature is chosen

as 120 ◦C based on datasheet [18] and an experimental study[23].

Table 1 Configuration parameters of wheel-health factor model.

Parameters Nominal Degraded Units

Cooling rate, 𝜆𝑇 2.6 × 10−2 1.25 × 10−3 s−1

Heating rate, 𝛾𝑇 2 × 10−2 4 × 10−1 K (N m)−1

Nominal temperature, 𝑇nom 34 34 ◦C

Maximum temperature, 𝑇max 120 120 ◦C

Health-map gain, 𝛼 3 3 N/A

For the health estimation, the health of each individual wheel is approximated using a single-input RBF neural

network. In this setup, the input is the normalized winding temperature. The architecture of each RBFNN is an 11-node

network consisting of 10 RBFs with uniformly spaced centers (i.e., 𝜇𝑖, 𝑗 ) between 0.05 and 0.95 with a common width

(i.e., 𝜂𝑖, 𝑗 ) of 0.12, and one bias. At the start of the simulation, it is assumed that none of the four wheels is degraded. To

ensure that the initial health estimate is set to healthy (𝜙 ≈ 1), the hidden weights are randomly initialized close to zero,

and the bias is initialized close to one. With four wheels, the RBF network resulted in 44 unknown parameters to be

learned by the controller. Configuration parameters are summarized in Table 2.

Table 2 RBFNN configurations.

Parameters Value Units

𝑇min, 𝑇𝑚𝑎𝑥 (nominal) 20,60 ◦C

𝑇𝑚𝑖𝑛, 𝑇max (degraded) 20,120 ◦C

Basis functions 10 RBFs –

Centers, 𝜇𝑘 0.05 . . . 0.95 (uniform) –

Width, 𝜂 0.12 –

Weight init. weights [-0.1,0.1], bias [0.8,1.0] –

In all simulation scenarios, the spacecraft follows a 12-minute alternative attitude reference between inertial and

Nadir pointing throughout the test, which lasts for 40,000 seconds. Spacecraft configuration parameters are listed in

Table 3, and the gains for each scenario are listed in Table 4.

The health model setup for all scenarios is identical, in which RW4 was degraded, and its winding temperature

keeps rising during the operation. For Scenario A, the objective is to validate the performance of the new controller

with the new health profile, which is a nonlinear, time-varying, and temperature-dependent function. This scenario also
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Table 3 Table of configuration parameters for the RWs for each simulation.

Parameter Value Units
Satellite Mass 25 kg

𝐽 𝑑𝑖𝑎𝑔{0.4333, 0.7042, 0.7042} kg m2

IC (𝑎, 𝑒, 𝑖, 𝜔,Ω, 𝜃)
[
6878 0 0.8901 05236 0.3491 0.7854

]
(𝑘𝑚, 𝑁/𝐴, rad)

IC (𝑞, 𝜔𝑏)
( [

1 0 0 0
]
,

[
0.0017 0.0087 0.0017

] ) (
𝑁/𝐴 , rad s−1)

𝐺 (4 RWs)


0.5774 −0.5774 0.5774 −0.5774
0.5774 0.5774 −0.5774 −0.5774
0.5774 0.5774 0.5774 0.5774

 N/A

𝐽𝑅𝑊 5.7296 × 105 kg m2

Max RW Torque 20 × 10−3 N m
Max Ω (for all RWs) 1.0472 × 103 rad s−1

Table 4 Gain matrices/parameters used in the test scenarios.

Gain Scenario A Scenario B

𝐾 0.1𝐼3 0.1𝐼3
𝛼 3×10−2𝐼3 3×10−2𝐼3

𝛽 5×10−3 5×10−3

Γ 10−1𝐼44 100𝐼4
𝐾CL 2 × 103𝐼44 0 (disabled)

𝜆̄ 1 × 10−9 N/A

demonstrates the importance of CL terms in driving the convergence of the estimated health to its true value once the

excitation condition is satisfied. Scenario B aims to compare the advantages of the new controller by comparing it with

the previously developed controller.

VI. Results

A. Scenario A: RBFNN+CL Controller

Figure 2 shows the simulation result for this case. The error MRP times series in Fig. 2a, and body angular velocity

times series in Fig. 2b illustrate that the spacecraft achieved the attitude tracking. Because the simulation duration

is long, the spikes indicate the attitude responses that occur when the spacecraft alternates between inertial hold and

Nadir pointing. As seen in the zoomed-in plot, the attitude and body angular velocity response settles to its steady-state,

confirming the accurate tracking. Figure 2c plots the winding temperature of all four wheels, and it can be seen that

the winding temperature of RW#4 is higher than the others due to its poor thermal management, indicating the faulty

condition.

Figure 3 demonstrates the importance of the CL term for the convergence of the estimated health-factor to its true
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Fig. 2 Scenario A: 4 RWs with CL Term Activated.

values. Figure 3a shows the plot of the "lambda" term 𝜆, i.e., 𝜆min

(∑𝑁𝑠

𝑖=1 Ψ
𝑇
𝑖
Ψ𝑖

)
, with the threshold set to 𝜆̄ = 10−9,

which is user-defined, and serves as an indication of when the controller has gathered enough information about the

system. Figure 3c shows weights and biases of RBFNN. Figure 3b, 3d shows the true health factors 𝜙𝑖 and their

estimates 𝜙𝑖 , respectively. Before the 𝜆̄ is reached, the weights and biases stayed around their initial values, the RW

health estimated hovered around one, and the estimated health could not respond to the rapid change of the true health

factors. Once 𝜆 passes the threshold 𝜆̄ = 10−9, the CL term is activated. As evident in Fig. 3d, the estimated RW health

closely tracks its true value, and the weights and biases of the RBFNN also converged exponentially as demonstrated in

the stability analysis section.

Figure 4 compares the winding temperature of RW#4 when the CL term is activated versus when it is deactivated.

The health factor is modeled to depend on RW winding temperature, and the winding temperature depends on the

amount of torque and angular velocity applied. Since the CL term is not activated, the controller was not able to

accurately estimate the health of the RW#4. Because the controller continues to command torque on RW#4, the wheel
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Fig. 3 Reaction Wheel Health Estimation with RBF+CL Controller.

heats up and its health factor continues to degrade even further. With the CL term activated, the controller is able to

estimate the health factor of degraded torque, and it can effectively allocate more torque to those non-degraded wheels

than to the degraded ones. Therefore, with the help of the CL term, the controller was able to prevent the RW#4 from

overheating as seen in the Fig. 4.

B. Scenario B: ICL controller performance with realistic, nonlinear health model

In our previous work [10], we developed an adaptive controller with an Integral Concurrent Learning (ICL) term

that was able to learn the health parameters of the reaction wheels, given the assumption that the health parameters

were constant or slowly time-varying. Although successful under this assumption, this did not allow us to properly

model the complex, nonlinear health profile that realistic RWs experience. In this scenario, we apply this more realistic,

nonlinear health model to our previous adaptive controller to emphasize the capability of our new model to adequately
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Fig. 4 Comparison of RW#4’s Winding Temperature with and without Activation of CL Term

learn such a nonlinear function. Figure 5 compares the true healths of the wheels during the simulation (a), and the

estimated healths estimated by the ICL controller (b). It is evident that the controller, albeit activating the ICL term

within periodic resets, is unable to accurately learn the health of the RWs. The constant health assumption is quite strict

on this model and is hence why it struggles to capture the behavior of this health profile. It is able to recognize the fact

that the wheel has degraded, but not accurately.

For this scenario, all health profiles based on coil winding temperature and guidance commands were kept the same

as Scenario A to ensure a fair comparison between the two models. Not shown here, are the RWs temperatures during

the simulation as they are similar to the No-CL profiles in Fig. 4. The ICL controller was not able to effectively reduce

the temperature, and hence wear on the degraded RW like it is able to with the CL controller.
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Fig. 5 Reaction Wheel Health Estimation with ICL Controller.
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Due to the relatively small scale of our RBFNN, only consisting of 10 RBF’s for each wheel, the computational

burden that this controller imposes at inference time, is significantly lower as compared to more advanced, demanding

learning controllers such as Imitation Learning or Reinforcement Learning networks which can have on the order of

millions of parameters. For the case with 4 RW, our network comparatively has 44 parameters. Current edge computing

capabilities have significantly increased with the popularity of NN based controllers, and with onboard computers such

as the NVIDIA Jetson Nano, it is expected that our proposed controller should run with little CPU utilization, but we

leave this for future work as a full Hardware-in-the-Loop test set up.

VII. Conclusion
In this paper, we proposed an adaptive controller that guarantees attitude tracking and reaction wheel health

estimation by using Radial Basis Function Neural Network (RBFNN) and a Concurrent Learning (CL) adaptive control

framework.

The new controller retains the Lyapunov-based stability guarantees of the original controller while being capable of

identifying nonlinear, time-varying reaction-wheel (RW) health degradation that depends on winding temperature, wheel

angular speed, and spacecraft angular velocity. Simulation results show that, compared with the previous approach, the

new RBFNN + CL controller still provides accurate attitude tracking while being capable of learning the true health of a

degraded wheel more accurately, and also helps reduce the wheel winding temperature from overheating.

Future work will focus on improving the wheel-health factor model using more accurate temperature data, validating

the controller on a hardware-in-the-loop attitude testbed, and exploring the use of other, more complex NN architectures

while retaining stability guarantees. This work serves as a stepping stone to use more complex NN architectures such as

fully connected single-layer NNs (with weights/biases also in the input-to-hidden layer connections), and Deep NNs.
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