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The attitude control of a spacecraft is integral to achieving mission success. However, failures

in actuators such as reaction wheels are detrimental and can often lead to an early end of

mission. We propose a Lyapunov-based adaptive controller that can estimate and compensate

for reaction wheels degradation simultaneously. The controller incorporates an adaptive update

control law with a gradient-based term and an integral concurrent learning term that collects

input-output data for online estimation of uncertain parameters. The proposed controller

guarantees attitude tracking and minimal loss of control authority under faulty reaction wheel

performance. The controllers performance is tested through a variety of numerical simulations

as well as a Software-In-Loop test, where the adaptive controller is run in Python via ROS2

whilst the environment is simulated in Simulink.

Nomenclature

𝝎 = spacecraft angular velocity

𝝈 = modified rodrigues parameters (MRP)

𝛀 = RW angular velocities

𝒖 = control input

𝐺 = reaction wheel configuration matrix

Φ = RW health matrix

𝐽 = total inertia matrix

𝐾, 𝛼 = control gain matrices

𝐾1, Γ = adaptation gain matrices

𝜆̄ = finite excitation threshold

𝜽 = vector of uncertain parameters
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I. Introduction
The spacecraft’s ability to accurately modify its attitude is one of the most critical features that must be guaranteed in

any space mission. Reaction Wheels (RW) are the most commonly used actuators for this purpose due to their relatively

small size and torque accuracy. However, their moving parts and the harsh conditions in space make these actuators

prone to failure. The Attitude Control System (ACS) of a spacecraft is a highly critical system, hence the failure of this

system often means the end of the mission. Redundant Reaction Wheel Arrays (RWA) with more than three RWs are

often used to maintain control authority for three-axis attitude control, and for momentum management using the RWA

null space [1].

Designing controllers for attitude control requires that they be resilient to disturbances and uncertainties. Current

methods of control to address these issues include, sliding mode control (SMC) [2], adaptive control [3], observers

(SMO) [4–6], multiple model filers [7] and neural networks [8]. Often due to the lack of accuracy and difficulty

in proving stability, neural networks are rejected as viable solutions, whilst observers are used at the cost of more

computational burden. Hence, of particular importance is the development of sliding mode-based strategies, which are

powerful yet simple controllers that unfortunately can often suffer from chattering due to their inherent discontinuities.

One of the disadvantages of SMO is the requirement to have the dynamics in a specific form [5, 6], which limits its

applicability to a broader class of nonlinear systems. The work in [9] develops an adaptive, fault tolerant sliding mode

that does not generate chattering through an adaptive control protocol. Adaptive controllers are also a prominent

solution because of their innate ability to handle uncertainties in the nonlinear dynamics [9–11]. The authors in [12]

demonstrate the capabilities for a fuzzy logic controller to perform state estimate under partial state observation, while

[13] uses a fuzzy bilateral cooperative tracking controller estimate unknown nonlinear functions with formal guarantees

on convergence, demonstrating the wide applicable nature of adaptive controllers within the domain of control systems.

Fault-tolerant controllers have been developed to compensate for the reduction in performance of the ACS actuators.

In [14], a backstepping sliding mode controller was designed to maneuver the spacecraft’s attitude despite faulty

actuators, which were a combination of RWs and thrusters. [15] develops a sliding mode combined with disturbance

observer fault tolerant controller that can quickly and efficiently handle actuator saturation and misalignment. Sensor

failures were also detected and isolated using Unscented Kalman filters (UKF). Authors in [16] designed a RW failure

detection strategy that employs a pair of long short-term memory (LSTM) neural networks, one to approximate the RW

dynamics and the other to train an adaptive threshold detector based on the difference between RW measurements and

the first network.

A fault diagnosis strategy was designed in [17] using a particle filter to predict the non-measurable bearing

temperature lubricant in a RW, which has been identified as one of the main indicators for potential failures in this type

of actuator. A similar approach was proposed in [18] to predict the remaining useful life of RWs by using an adaptive

extended Kalman filter. In [19] a Lyapunov-based terminal sliding-mode observer was proposed to reconstruct RW
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faults and disturbances, and a compensation control law was designed to account for them.

Adaptive control strategies are often used to compensate for parametric uncertainties in the system model by

proposing gradient-based adaptation laws that compute estimates of the uncertain parameters online [20]. These

adaptation laws are often sufficient to prove convergence of the error states. However, convergence of the model

parameters to their real values can only be guaranteed under the assumption of Persistent Excitation (PE), i.e., the

system is persistently excited over an infinite time integral, which is difficult to guarantee and verify in practice [21, 22].

An adaptation strategy, called Concurrent Learning (CL), was proposed to relax the PE condition by introducing in the

adaptation law a term that collects input and output data under the assumption of measurable higher order states [23].

The CL adaptation strategy guarantees exponential convergence of the system parameter estimates after a verifiable

Finite Excitation (FE) condition is satisfied, which can be evaluated online, and concurrent to the control execution, by

computing the eigenvalue of a matrix built with collected input-output data. Recent efforts have relaxed the assumption

of measurable higher order states by using their integrals in the so-called Integral Concurrent Learning (ICL) [24],

which has been used in a wide range of control applications [25–27].

Compensation for actuator fault detection and detection or monitoring of actuator degradation are often considered

as separate blocks in the spacecraft ACS, in the control and estimation blocks, respectively. This paper introduces a

Lyapunov-based adaptive controller that performs both compensation and fault detection simultaneously, and achieves

global exponential attitude tracking in the presence of RW failure or degradation. An actuator health matrix is included

in the satellite attitude dynamics and considered uncertain. An ICL-based adaptive update law is designed to achieve

convergence of the RW health parameters once the FE condition is satisfied. The controller is validated in simulation

with different numbers of RWs along with varying types of degradation levels.

The paper is organized as follows: A first section presents the satellite attitude dynamic model, the next two sections

describe the controller design and corresponding stability analysis. Finally, sections with performed numerical and SIL

simulations, and conclusions are presented.

II. Spacecraft Attitude Dynamics
Three reference frames and their corresponding coordinate systems will be considered throughout this paper, and

are depicted in Fig. 1. The Body reference frame B, attached to the spacecraft body is defined with origin at its center

of mass, and the unit vectors 𝒃̂1, 𝒃̂2 and 𝒃̂3 ∈ R3 along its longitudinal, lateral and vertical axes, respectively. The

coordinate system associated with the orbital reference frame O has origin at the spacecraft center of mass, and is defined

by the unit vectors 𝒐̂1, 𝒐̂2 and 𝒐̂3 ∈ R3, with 𝒐̂3 aligned with the zenith direction, 𝒐̂2 the orbital angular momentum

vector, and 𝒐̂1 aligned with the (𝒐̂2 × 𝒐̂3) direction. The Earth-Centered-Inertial (ECI) coordinate system, centered at

the Earth’s center of mass and with basis {𝒙̂, 𝒚̂, 𝒛}, is associated with the Inertial reference frame N .
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Fig. 1 Coordinate Systems

A. Equation of Motion

The attitude motion of a spacecraft with 𝑁 ∈ Z>0 reaction wheels is governed by the following equations of motion:

𝐽 ¤𝝎 = −𝝎 × (𝐽𝝎 + 𝐽𝑅𝑊𝐺𝛀) + 𝐺Φ𝒖 + 𝒅 (1)

¤𝝈 =
1
4

[(
1 − 𝝈𝑻𝝈

)
𝐼3 + 2𝜎× + 2𝝈𝝈𝑻

]
𝝎, (2)

where 𝝎 ∈ R3 is the spacecraft angular velocity expressed in the body coordinate system, 𝝈 ∈ R3 is the vector of

Modified Rodrigues Parameters (MRP) that represent the orientation of the spacecraft with respect to the inertial

frame [28], 𝛀 = [Ω1,Ω2, · · · ,Ω𝑁 ]𝑇 ∈ R𝑁 is a vector containing the 𝑁 RW angular velocities, 𝒖 = −𝐽𝑅𝑊 ¤𝛀 =

[𝑢1, 𝑢2, · · · , 𝑢𝑁 ]𝑇 ∈ R𝑁 is the control input that represents the torque applied by each RW, 𝐽 ∈ R3×3 is the total inertia

matrix, 𝐽𝑅𝑊 ∈ R>0 is the inertia of the flywheels about their spin axis, Φ = 𝑑𝑖𝑎𝑔{𝜙1, 𝜙2, · · · , 𝜙𝑁 } ∈ R𝑁×𝑁 is the

uncertain RW health matrix, 𝐺 = {𝒔1, 𝒔2, · · ·, 𝒔𝑵 } ∈ R3×𝑁 is the RWA configuration matrix, and 𝒔𝒊 ∈ R3 is the direction

of the 𝑖𝑡ℎ RW’s spin axis expressed in the body coordinate system, 𝒅 ∈ R3 represents external disturbances acting on

spacecraft, and ∥𝒅∥ ≤ 𝛿 with 𝛿 ∈ R>0. The matrix 𝐼𝑚 ∈ R𝑚×𝑚 represents an identity matrix of dimension 𝑚 × 𝑚, and

the skew-symmetric matrix 𝑎× ∈ R3×3 for a vector 𝒂 = [𝑎1, 𝑎2, 𝑎3]𝑇 ∈ R3 is defined as
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𝑎× =



0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0


. (3)

III. Control Design

A. Control Objective

The objective is to design an adaptive controller that achieves attitude tracking despite failures in one or more

redundant reaction wheels. Besides compensating for these failures, the controller must also provide an online estimate

of the health matrix Φ for actuators performance assessment.

Assumption 1. When failures occur to some of the RWs, the combined control effort of the remaining healthy RWs

and the faulty RWs are sufficient maintain control authority along all body axes. This is a result of the redundant nature

of RW configuration arrays. The underactuated case is not considered further in this paper.

Assumption 2. Changes or degradation in performance of RWs are slow enough, as compared to attitude maneuver

times, for the Φ matrix to be considered constant.

The spacecraft attitude dynamics in Eq. (1) can be rewritten as

¤𝝎 = 𝐽−1 (−𝝎 × (𝐽𝝎 + 𝐽𝑅𝑊𝐺𝛀) + 𝑌𝜽 + 𝒅) , (4)

where the term 𝑌𝜽 = 𝐺Φ𝒖 ∈ R3 is a linear parameterization with respect to the uncertain diagonal entries of the health

matrix Φ. 𝑌 ∈ R3×𝑁 is a measurable regression matrix defined as

𝑌 = 𝐺 (𝑑𝑖𝑎𝑔{𝑢1, 𝑢2, · · · , 𝑢𝑁 }) , (5)

and the vector of uncertain parameters 𝜽 ∈ R𝑁 as

𝜽 = [𝜙1, 𝜙2, · · · , 𝜙𝑁 ]𝑇 (6)

Assumption 3. The spacecraft is equipped with an attitude determination system capable of providing the controller

with angular velocity 𝝎 and attitude 𝝈 measurements.

Let us introduce the error MRP 𝝈𝒆 ∈ R3, representing the attitude mismatch between the body and desired frames,

which can be computed using the spacecraft attitude 𝝈 and desired, bounded attitude trajectories 𝝈𝒅 , 𝝎𝒅 ∈ R3, and
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obeys the following kinematic equation [28]:

¤𝝈𝒆 =
1
4
𝐵𝝎̃, (7)

where the matrix 𝐵 ∈ R3×3 is defined as

𝐵 =

(
1 − 𝝈𝑻

𝒆 𝝈𝒆

)
𝐼3 + 2𝜎×

𝑒 + 2𝝈𝒆𝝈
𝑻
𝒆 , (8)

𝝎̃ = 𝝎 − 𝑅̃𝝎𝑑 ∈ R3 is the relative angular velocity and 𝑅̃ ∈ R3×3, defined as

𝑅̃ = 𝐼3 +
8
(
𝝈×
𝒆

)2 − 4
(
1 − 𝝈𝑻

𝒆 𝝈𝒆
)
𝝈×
𝒆(

1 + 𝝈𝑻
𝒆 𝝈𝒆

)2 , (9)

represents the rotation matrix between the body and desired frames.

The attitude control objective can be established as

𝑅̃ → 𝐼3, as 𝑡 → ∞, (10)

which will be achieved if

∥𝝈𝒆 ∥ → 0, and ∥𝝎̃∥ → 0 ⇒ ∥ ¤𝝈𝒆 ∥ → 0. (11)

B. Control Development

Let us define a modified state vector 𝒓 ∈ R3 as

𝒓 = ¤𝝈𝒆 + 𝛼𝝈𝒆, (12)

where 𝛼 ∈ R3×3 is a symmetric, positive definite control gain matrix. Taking the time derivative of Eq. (12) yields

¤𝒓 =
1
4
¤𝐵𝝎̃ + 1

4
𝐵

(
¤𝝎 − 𝑅̃ ¤𝝎𝒅 − ¤̃𝑅𝝎𝒅

)
+ 𝛼 ¤𝝈𝒆, (13)

with ¤𝐵 =
[
−2𝝈𝑻

𝒆 ¤𝝈𝒆 𝐼3 + 2 ¤𝜎×
𝑒 + 4

(
¤𝝈𝒆𝝈

𝑻
𝒆

) ]
.

Using the dynamics in Eq. (4), and the fact that ¤̃𝑅 = −𝜔̃× 𝑅̃, we obtain

¤𝒓 =
1
4
¤𝐵𝝎̃ + 1

4
𝐵

(
𝐽−1

(
−𝝎 × (𝐽𝝎 + 𝐽𝑅𝑊𝐺𝛀) + 𝑌𝜽 + 𝑌𝜽 + 𝒅

)
− 𝑅̃ ¤𝝎𝒅 + 𝜔̃× 𝑅̃𝝎𝒅

)
+ 𝛼 ¤𝝈𝒆, (14)

where the estimation error is defined as 𝜽 = 𝜽 − 𝜽 ∈ R𝑁 , and therefore the fact that 𝑌𝜽 = 𝑌𝜽 + 𝑌𝜽 was used.
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Since the control input 𝒖, i,e., RW torques, is embedded in the 𝑌𝜽 term, let the auxiliary control signal 𝒖𝒅 ∈ R3 be

designed as

𝒖𝒅 = 𝝎 × (𝐽𝝎 + 𝐽𝑅𝑊𝐺𝛀) + 𝐽𝑅̃ ¤𝝎𝒅 − 𝐽𝜔̃× 𝑅̃𝝎𝒅 + 4𝐽𝐵−1
[
−1

4
¤𝐵𝝎̃ − 𝛼 ¤𝝈𝒆 − 𝐾 𝒓 − 𝛽𝝈𝒆

]
, (15)

where 𝛽 ∈ R>0 is a constant control gain.

Based on Eqs. (14) and (15), the adaptation law is designed as

¤̂𝜽 = proj

{
1
4
Γ𝑌𝑇

(
𝐽−1

)𝑇
𝐵𝑇 𝒓 + Γ𝐾1

𝑁𝑠∑︁
𝑖=1

Y𝑇
𝑖

(
𝐽𝝎(𝑡) − 𝐽𝝎(𝑡 − Δ𝑡) + U𝒊 − Y𝑖𝜽

)}
, (16)

where Γ, 𝐾1, ∈ R𝑁×𝑁 are constant, positive definite adaptation gain matrices, 𝜽 ∈ R𝑁 is the estimate of 𝜽 , Δ𝑡 ∈ R>0 is

the time between samples, proj{·} represents a projection algorithm to keep 𝜽 within known, user-defined bounds [29],

𝑁𝑠 ∈ Z>0 is the number of input-output data pairs used for online parameter estimation, and the terms U𝒊 ∈ R3, and

Y𝑖 ∈ R3×𝑁 are defined as

U𝒊 (Δ𝑡, 𝑡𝑖) =
∫ 𝑡𝑖

𝑡𝑖−Δ𝑡
(𝝎(𝜏) × (𝐽𝝎(𝜏) + 𝐽𝑅𝑊𝐺𝛀(𝜏))) 𝑑𝜏, (17)

Y𝑖 (Δ𝑡, 𝑡𝑖) =
∫ 𝑡𝑖

𝑡𝑖−Δ𝑡
𝑌 (𝜏)𝑑𝜏. (18)

The input-output data pairs in Eq. (16) refer to the expressions in Eq. (17) and Eq. (18) that contain states (output)

information, and control input information, since the regressor 𝑌 depends on the applied control input. The data pairs

are collected via the summation without requiring memory buffers and the number of samples 𝑁𝑠 is truncated once the

subsequent FE condition is satisfied.

Based on the definition of 𝑌𝜽, the term 𝑌𝜽 can be written as 𝑌𝜽 = 𝐺Φ̂𝒖, where Φ̂ is the estimate of Φ. Note that

the actual control input is 𝒖. Then, we can set

𝑌𝜽 = 𝒖𝒅 , (19)

and recover 𝒖 as

𝒖 =

(
𝐺Φ̂

)†
𝒖𝒅 , (20)

where Φ̂ can be obtained by numerically integrating Eq. (16), and (·)† is the Moore-Penrose pseudo-inverse of (·).

In solving Eq. (20) for a system which has degraded RW performance, it is ideal for the controller to not only identify
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which RW(s) are experiencing performance loss, but to then reallocate the required control torques to the remaining

operational RWs so that the full control authority of the vehicle is maintained. Since the system of equations in Eq. (20)

is underdetermined, using the Moore-Penrose pseudo-inverse ensures finding the solution that minimizes the 2-norm of

𝒖, allocating less torque on the degraded RW(s) to keep the 2-norm low [1, 30]. The proof for the minimization of the

2-norm of the matrix as a result of using the Moore-Penrose pseudo-inverse is given in [1].

Assumption 4. The system is sufficiently excited over a finite duration of time. Then, there exists a finite time 𝑇 ∈ R>0

such that

𝜆𝑚𝑖𝑛

{
𝑁𝑠∑︁
𝑖=1

Y𝑇
𝑖 Y𝑖

}
≥ 𝜆̄, (21)

where 𝜆𝑚𝑖𝑛{·} denotes the minimum eigenvalue of the finite excitation condition matrix {·}, and 𝜆̄ ∈ R>0 is a user-defined

threshold.

Prior to the FE condition being satisfied, the controller, through the second term (i.e., ICL term) in Eq. 16 collects

the input-output data pairs to learn and increase 𝜆𝑚𝑖𝑛 in Eq. 21, but only the first term (i.e., gradient-based term) is

effectively used to update the parameter estimates. Once the FE condition is met, the ICL term is enabled and data is no

longer appended to Eq. 16. The amount of data needed to estimate the uncertain model parameters requires tuning of

the 𝜆̄ threshold which is used to indicate when the system has been sufficiently excited. The selection of 𝜆̄ must be done

in such a way that the system collects enough data from regions of the state space that are relevant for operation.

IV. Stability Analysis
To facilitate the subsequent stability analysis, let us define the composite state vectors 𝒚 =

[
𝒓𝑻 , 𝝈𝑻

𝒆

]𝑇 ∈ R6, and

𝜼 = [𝒓𝑻 , 𝝈𝑻
𝒆 , 𝜽

𝑻 ]𝑇 ∈ R6+𝑁 , the known bounding constants 𝛾, 𝛾̄, 𝜖1, 𝜖2, 𝜅, 𝜅 ∈ R>0, and the convergence rate

constants 𝜇 = min
(
𝜆min{𝐾} − 1

2 , 𝛽𝜆min{𝛼}
)
∈ R>0, and 𝜁 = min

(
𝜇, 𝜆𝑚𝑖𝑛

{
𝐾1

∑𝑁𝑠

𝑖=1 Y
𝑇
𝑖
Y𝑖

})
∈ R>0.

The stability analysis is divided into two theorems: the first theorem considers the stability of the closed-loop system

before the finite excitation condition in Assumption 4 is satisfied, i.e., 𝑡 < 𝑇 ; and the second theorem presents the

stability of the closed-loop system after t=T.

Theorem 1. Given the spacecraft attitude dynamics in Eqs. (1) and (2), along with the adaptive update law in Eq. (16),

the controller proposed in Eq. (15) ensures the attitude tracking error is globally ultimately bounded such that

∥𝒚(𝑡)∥ ≤
√︄
𝛾

𝛾
∥𝒚(0)∥ exp

(
− 𝜇

2𝛾
(𝑡 − 𝑡0)

)
+
√︄
𝑏̄ − 𝑏
𝛾

+
√︄
𝑐𝛾

𝜇𝛾
𝑡0 ≤ 𝑡 < 𝑇. (22)

Proof. Consider the Lyapunov candidate function 𝑉 : R6+𝑁 → R>0
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𝑉 (𝑡) = 1
2
𝒓𝑻 𝒓 + 𝛽

2
𝝈𝑻
𝒆 𝝈𝒆 +

1
2
𝜽𝑇Γ−1𝜽 , (23)

bounded as

𝛾∥𝒚∥2 + 𝑏 ≤ 𝑉 (𝑡) ≤ 𝛾∥𝒚∥2 + 𝑏. (24)

Taking the time derivative of Eq. (23), substituting Eqs. (12), (15) and (19), we get

¤𝑉 (𝑡) = 𝒓𝑇
(

1
4
𝐵𝐽−1𝑌𝜽 − 𝐾 𝒓 + 1

4
𝐵𝐽−1𝒅

)
− 𝛽𝝈𝑇

𝒆 𝛼𝝈𝒆 − 𝜽𝑇Γ−1 ¤̂𝜽 . (25)

The expression in Eq. (16) can be represented in the non-implementable -but useful for the stability analysis- form

¤̂𝜽 = proj

{
1
4
Γ𝑌𝑇

(
𝐽−1

)𝑇
𝐵𝑇 𝒓 + Γ𝐾1

𝑁𝑠∑︁
𝑖=1

Y𝑇
𝑖

(
D𝑖 + Y𝑖𝜽

)}
, (26)

where D𝑖 =
∫ 𝑡𝑖

𝑡𝑖−Δ𝑡 𝒅(𝜏)𝑑𝜏. Eq. (26) can be plugged in Eq. (25) to obtain

¤𝑉 (𝑡) = −𝒓𝑇𝐾 𝒓 − 𝛽𝝈𝑇
𝒆 𝛼𝝈𝒆 +

1
4
𝒓𝑇𝐵𝐽−1𝒅 − 𝜽𝑇𝐾1

𝑁𝑠∑︁
𝑖=1

Y𝑇
𝑖 Y𝑖𝜽 − 𝜃𝑇𝐾1

𝑁𝑠∑︁
𝑖=1

Y𝑇
𝑖 D𝑖 . (27)

Under Assumption 4, and before 𝑡 = 𝑇 , Eq. (27) can be upper bounded as

¤𝑉 (𝑡) ≤ −𝜆𝑚𝑖𝑛 {𝐾} ∥𝒓∥2 − 𝛽𝜆𝑚𝑖𝑛 {𝛼} ∥𝝈𝒆 ∥2 + 𝜖1 + 𝜖2∥𝒓∥, (28)

where



𝜽𝑇𝐾1

∑𝑁𝑠

𝑖=1 Y
𝑇
𝑖
D𝑖




 ≤ 𝜖1,


 1

4 𝒓
𝑇𝐵𝐽−1𝒅



 ≤ 𝜖2∥𝒓∥. The preceding bounds come from the use of a smooth

projection algorithm in Eq. (16) and the following facts: From the definition of the regression matrix in Eq. (5), Y𝑖

is evaluated from the torques that each RW generates, thus due to physical limitations of the RW’s, the torques and

regression matrix are bounded. Since the disturbance 𝒅 is bounded by 𝛿, then D𝑖 is bounded, as 𝑁𝑠 is finite. 𝐽−1 and 𝒅

are bounded by constants by definition, and 𝐵 is also bounded by a constant due to the use of the MRP short rotation,

i.e., ∥𝝈𝒆 ∥ ≤ 1 [28, 31].

Applying Young’s inequality as 𝜖2∥𝒓∥ ≤ 1
2 ∥𝒓∥

2 + 1
2 𝜖

2
2 , yields the expression

¤𝑉 (𝑡) ≤ −𝜇∥𝒚∥2 + 𝑐, (29)

with 𝑐 = 𝜖1 + 1
2 𝜖

2
2 . Using the upper bound in the Eq. (24), the expression can be rewritten as

¤𝑉 (𝑡) ≤ − 𝜇
𝛾
𝑉 (𝑡) +

(
𝜇𝑏̄

𝛾
+ 𝑐

)
(30)
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Using the comparison Lemma, we obtain the following

𝑉 (𝑡) ≤
(
𝑉 (𝑡0) − 𝑏̄ −

𝑐𝛾

𝜇

)
exp

(
− 𝜇
𝛾
(𝑡 − 𝑡0)

)
+ 𝑏̄ + 𝑐𝛾

𝜇
𝑡0 ≤ 𝑡 < 𝑇. (31)

Using the quadratic bounds in Eq. (24), yields the upper bound for ∥𝒚(𝑡)∥ in Eq. (22), where the tracking error

decays with rate 𝜇/(2𝛾) until it reaches the bound
√︃
(𝑏̄ − 𝑏)/𝛾 +

√︃
𝑐 𝛾/(𝜇 𝛾).

The subsequent theorem, assumes that the finite excitation condition in Eq. (21) is satisfied, which will allow online

estimation of the RW health matrix Φ. The purpose of estimating Φ is to obtain information about the RWs performance.

For instance, in the case of total failure on the 𝑖𝑡ℎ RW the spacecraft will not experience torques coming from that RW.

This will force the estimation of Φ′𝑠 𝑖𝑡ℎ diagonal entry to approach zero provided guaranteed convergence of 𝜽 , so that

no torques from this RW influence the attitude dynamics.

Theorem 2. For the spacecraft attitude dynamics described in Eqs. (1) and (2), the controller in Eq. (15) and the

adaptation law in Eq. (16) ensure that the tracking errors and health estimates are globally ultimately bunded such that

∥𝜼(𝑡)∥ ≤
√︄
𝜅

𝜅
∥𝜼(𝑇)∥ exp

(
− 𝜁

2𝜅
(𝑡 − 𝑇)

)
+
√︄
𝑐𝜅

𝜁𝜅
∀ 𝑡 ≥ 𝑇. (32)

Proof. The bounds for the Lyapunov function in Eq. (23) can be expressed as

𝜅 ∥𝜼∥2 ≤ 𝑉 (𝑡) ≤ 𝜅 ∥𝜼∥2 , (33)

Since the matrix
∑𝑁𝑠

𝑖=1 Y
𝑇
𝑖
Y𝑖 is positive definite after 𝑡 = 𝑇 , i.e., the finite excitation condition is satisfied, then the upper

bound for ¤𝑉 can be rewritten in a compact form as

¤𝑉 (𝑡) ≤ −𝜁 ∥𝜼∥2 + 𝑐. (34)

Applying the comparison lemma [20] and using the bounds in Eq. (33) yields

𝑉 (𝑡) ≤
(
𝑉 (𝑇) − 𝑐𝜅

𝜁

)
exp

(
− 𝜁
𝜅
(𝑡 − 𝑇)

)
+ 𝑐𝜅
𝜁

∀ 𝑡 ≥ 𝑇. (35)

Using the bounds in Eq. (33) to express Eq. (35) in terms of ∥𝜼(𝑡)∥ and ∥𝜼(𝑇)∥ yields the result in Eq. (32). The

finite excitation results in the exponential decay of the tracking error to reach the bound
√︃
(𝑐𝜅) /

(
𝜁𝜅

)
.

10



V. Simulation
To validate the controller’s capability of estimating the uncertain health parameters of the RWs, we devise 5 separate

scenarios. In all simulation scenarios, the same attitude reference commands are used. In each of the first 4 scenarios,

the attitude reference is initially set to align the body and ECI frames to then alternate between the initial configuration

and Nadir pointing three times before settling with Nadir pointing. The change of attitude reference occurs every 12

minutes with the final Nadir pointing being set after 2000 seconds of simulation. The final scenario is a long time frame

test aiming to evaluate the controller’s performance under slow time-varying degradation. For this scenario, the attitude

reference is continuously switched every 12 minutes for the entire duration of the simulation. The first two scenarios,

both with 4 RWs, aim to demonstrate the health estimation capability by running the same scenario with and without the

ICL term enabled.

The next pair of scenarios illustrate the capability of the controller to identify the degradation level of a certain

pair of RWs. Both simulations contain six RWs with two failing to different levels. In the first scenario, the two RWs

are degraded to 0% performance, i.e., complete failure, whilst in the second, RW 1 is degraded to 0% performance

and RW 2 is degraded to 30% performance. The gains used for all scenarios are listed in Table 1 and other simulation

parameters are listed in Table 2.

Table 1 Table of gains for the adaptive controller for all 4 Cases.

Gain Case 1 Case 2 Case 3 Case 4
𝐾1 10 𝐼4 0 10 𝐼6 10 𝐼6
𝐾 5 × 10−1 𝐼3 5 × 10−1 𝐼3 5 × 10−2 𝐼3 5 × 10−2 𝐼3

𝛼 3 × 10−2 𝐼3 3 × 10−2 𝐼3 3 × 10−2 𝐼3 3 × 10−2 𝐼3

𝛽 5 × 10−3 5 × 10−3 5 × 10−3 5 × 10−3

Γ 100 𝐼4 100 𝐼4 300 𝐼6 300 𝐼6
𝜆̄ 1 × 10−7 N/A 8 × 10−9 8 × 10−9

Φ 𝑑𝑖𝑎𝑔{1, 1, 0, 1} 𝑑𝑖𝑎𝑔{1, 1, 0, 1} 𝑑𝑖𝑎𝑔{0, 0, 1, 1, 1, 1} 𝑑𝑖𝑎𝑔{0, 0.3, 1, 1, 1, 1}

The final scenario is designed to test a limitation of the proposed controller, the assumption of constant health

parameters defined in Assumption III.A. Set up similar to the first scenario, where RW 3 experiences performance

degradation, it is run however for a total of 100,000 seconds. Unlike scenario 1, the degradation of RW 3 follows a

logarithmic-like decay from ∼ 60% to ∼ 50% for the first 65,000 seconds to mimic realistic RW performance decay

[32–34]. After that point, it experiences an abrupt loss in performance to 20%. Concurrently, we truncate the learning

of the controller once FE condition is met by setting the upper limit in the summation, 𝑁𝑠 in Eq. (16) to be the number

of samples required to reach the verifiable FE condition. This allowed using only the necessary samples to make the

estimation to reduce susceptibility to the time-varying health matrix Φ. Lastly, to further improve the estimation given

the challenging scenario, the ICL term and estimates were reset every 10,000 seconds, to allow for the controller to
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Table 2 Table of configuration parameters for the RWs for each simulation.

Parameter Value Units
Satellite Mass 25 kg

𝐽 𝑑𝑖𝑎𝑔{0.4333, 0.7042, 0.7042} kg m2

IC (𝑎, 𝑒, 𝑖, 𝜔,Ω, 𝜃)
[
6878 0 0.8901 05236 0.3491 0.7854

]
(𝑘𝑚, 𝑁/𝐴, rad)

IC (𝑞, 𝜔𝑏)
( [

1 0 0 0
]
,

[
0.0017 0.0087 0.0017

] ) (
𝑁/𝐴 , rad s−1)

𝐺 (4 RWs)


0.5774 −0.5774 0.5774 −0.5774
0.5774 0.5774 −0.5774 −0.5774
0.5774 0.5774 0.5774 0.5774

 N/A

𝐺 (6 RWs)


0.5 0.5 0.5 0.5 0.5 0.5
0 0.75 0.75 0 −0.75 −0.75

0.866 0.433 −0.433 −0.866 −0.433 0.433

 N/A

𝐽𝑅𝑊 5.7296 × 105 kg m2

Max RW Torque 20 × 10−3 N m
Max Ω (for all RWs) 1.0472 × 103 rad s−1

learn from the most recent batch of data. By resetting the ICL term and estimates, the entire estimation process is

essentially restarted, allowing for a more accurate estimate of the health focused around the reset time. For a profile

that is not constant, the old data, with a much higher health parameter, will cause a bias in the estimate of the current

health, so resetting mitigates this issue, although inducing the setback that the FE condition is required to be met again

for the estimates to converge. The RW health decay is in clear violation of Assumption 2. However, the decay profile

occurs slowly enough so that the controller is still able to provide a reasonable estimate of the health after each reset.

The benefit of the ICL method is evident in this simulation, as the relaxed FE condition, as opposed to the Persistent

Excitation condition that many other adaptive controllers require [21, 22], can quickly be satisfied and verified online

(in time to converge before the reset), resulting in a more updated estimate of the health parameters.

A. Cases 1 & 2: ICL term influence

The ICL term is responsible for the input-output data collection and helps achieving convergence of the uncertain

parameters’ estimation error. Hence, the following two simulations illustrate the importance of this term in the

controller’s ability to estimate the health of the system’s actuators; in this case, the health of all the RWs.

For both simulations, the time history plots for the error MRP, body angular velocity and RW angular velocity, are

presented in Figs. 2a & 4a , 2b & 4b and 2c & 4c for Cases 1 & 2, respectively, to verify that the controller is accurately

tracking the attitude command. The failing RW can be observed in the plot of the RWs angular velocities presented in

Figs. 2c & 4c.

For Case 1, when the ICL term is active, we include Fig. 3a, a plot of 𝜆, which is the minimum eigenvalue of the

finite excitation condition matrix explained in Assumption 4. Because there is an user-defined threshold 𝜆̄, which can be
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verified during execution, when this threshold is met it means that the system is sufficiently excited and exponential

convergence of the estimation error can be guaranteed. The estimation of the uncertain parameters is presented in Figs.

3b & 4d for both simulations. Because the ICL term is deactivated in Case 2, no plot of 𝜆 is necessary.

With Assumption 4 we can say that there is a time at which the FE condition is satisfied and thus the controlled has

learned and can effectively allocate the correct torques to the system as required by the control law. This is evident in

Fig. 5 which illustrates the applied control components in the body frame with and without ICL. Only with ICL after

FE, do the allocated torques closely match the desired torques. It is also noticeable from Table 3 that once the health

estimates have converged, the amount of torque applied to the failing RW is significantly lower, helping to save the

health of that wheel.

(a) Error MRP (b) Body Angular Velocity

(c) Reaction Wheel Angular Velocity

Fig. 2 Case 1: 4 RW’s with ICL term activated.
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(a) Minimum Eigenvalue of Finite Excitation Condition
Matrix w/ Threshold for Learning

(b) Estimated Parameters

Fig. 3 Case 1: 4 RW’s with ICL term activated.
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(a) Error MRP (b) Body Angular Velocity

(c) Reaction Wheel Angular Velocity (d) Estimated Parameters

Fig. 4 Case 2: 4 RW’s with no ICL term activated.
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Fig. 5 Actual vs. Desired Torques with and without the ICL term.

B. Cases 3 & 4: More RWs and partial degradation

As mentioned, Cases 3 & 4 are designed to test the capability of the proposed adaptive controller to perform in

multiple scenarios and still deliver the expected results. Since Cases 1 & 2 were designed around a system with 4 RWs,

these next two simulations contain a system with 6 RWs. The 6 RWs are arranged in a vertical, symmetric, hexagon such

that there are multiple redundancies built into the system. Along with the increased number of RWs, the system in both

simulations will experience the failure of two RWs, to test the ability of the controller to handle multiple failures. In

Case 3, RWs 1 and 2 are set to experience total failure, whilst in Case 4 the same RWs are set to experience degraded

performance, only able to output 0 and 30% of their nominal torque preformance, respectively. Like Cases 1 & 2, for

both scenarios we display the time history of their error MRP in Figs. 6a & 8a, the body angular velocity in Figs. 6b &

8b and the RW angular velocities in Figs. 6c & 8c. These present the overall performance of the controller and ensure

that it behaves as expected.

As both simulations have the ICL term active, Figs. 7a & 9a display the value of 𝜆 over time, whilst Figs. 7b & 9b

show the values of the estimated uncertain RW health parameters.
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(a) Error MRP (b) Body Angular Velocity

(c) Reaction Wheel Angular Velocity

Fig. 6 Case 3: 6 RW’s with failure of RW’s 1 & 2 set to 0%.

(a) Minimum Eigenvalue of Finite Excitation Condition
Matrix w/ Threshold for Learning

(b) Estimated Parameters

Fig. 7 Case 3: 6 RW’s with failure of RW’s 1 & 2 set to 0%.
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(a) Error MRP (b) Body Angular Velocity

(c) Reaction Wheel Angular Velocity

Fig. 8 Case 4: 6 RW’s with performance of RW 1 set to 0% and RW 2 set to 30%.

(a) Minimum Eigenvalue of Finite Excitation Condition
Matrix w/ Threshold for Learning

(b) Estimated Parameters

Fig. 9 Case 4: 6 RW’s with performance of RW 1 set to 0% and RW 2 set to 30%.
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C. Case 5: time-varying health degradation and ICL term reset

Due to the long time scale nature alternation between attitude commands, we present the results of this simulation

slightly differently to the previous simulations for clarity and to also emphasize the key aspects we aim to test in this

simulation. Like case 1, RW 3 experiences the performance loss and begins with a slow, gradual decay before abruptly

losing a majority of its performance. The loss is modeled with the following piecewise function:

𝜃𝑅𝑊4 =


− ln(𝑡+50000)

ln(50000) + 1.6 0 ≤ 𝑡 ≤ 65000

0.2 𝑡 ≥ 65000

Figure 10 presents the estimated health of all the reaction wheels along with the true performance profile of RW 3.

The red dashed lines represent the times when the FE condition is satisfied and 𝜆 has converged. When this condition

is met, no more data will be added to the second term in Eq. (16) and the learning is truncated. The parameters of

the controller responsible for learning are also reset every 10,000 seconds, as shown by the jump in all RW estimated

parameters to 100%.

(a) Estimated health parameters of the 4 RW. (b) ICL term convergence.

Fig. 10 Simulation of a realistic log-like health degradation of RW3, with sudden performance loss at 65,000
seconds.

A summary of the five simulated cases is presented in Table 3. The metrics for comparison between the simulations

include, whether ICL was active or not, the degradation profile of the RW and the number of RWs in the simulation

setup. The next metric is the the maximum torque allocated to the degraded wheel during the third maneuver, after

convergence of the ICL term (if applicable) as a percentage of what would have been the allocated torque by the same

controller without any adaptation or learning. That is all healths are initialized to 1 and setting the adaptation law Eq. 16

to zero. The final two metrics are the mean errors in approximation of both the degraded and healthy wheels separately.

This value is calculated analogous to a steady state error, thus is only captured once the estimation has converged.
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Because of the resetting of the ICL terms in Case 5, no mean error or maximum torque for this case is presented.

Table 3 Table of simulation and error metrics for all 5 Cases

Metrics Case 1 Case 2 Case 3 Case 4 Case 5
Degraded RW 3 3 1, 2 1, 2 3

𝐼𝐶𝐿 ✓ X ✓ ✓ ✓

Degradation Profile 0% 0% 0%, 0% 0%, 30% Log Decay
No. of RW 4 4 6 6 4
Max. torque 6.46% 112.67% 3.66%, 4.94% 6.75%, 56.32% N/A

Mean Error degraded RW 1.38% 64.98% 1.00% 1.48% N/A
Mean Error healthy RW 6.38% 4.27% 1.80% 2.56% N/A

D. Software-In-the-Loop (SIL)

To validate that the controller can be deployed and performs reliably on real hardware, we conducted a Software-in-

the-Loop (SIL) simulation using an NVIDIA Jetson Nano as a target hardware platform. The objective is to assess the

controller’s accuracy, timing behavior, and resource utilization when it is deployed on a realistic onboard hardware.

The SIL simulation architecture includes two main components. First, the satellite simulator, developed with

MATLAB/Simulink, models the spacecraft dynamics and provides satellite state data. Second, the adaptive control

algorithm, implemented in Python, runs on the separate onboard computer and is the main focus of SIL testing.

To facilitate communication in the SIL setup, the Robot Operating System 2 (ROS2) framework was chosen as the

communication interface due to its robust communication model that ensures efficient data transfer over a shared

network [35]. Additionally, ROS2 offers scalability, making it easy to add or remove components while maintaining the

overall architecture. The SIL setup is available at the Space Vehicle and Robotics laboratory at the Florida Institute of

Technology.

In the setup configuration shown in Fig. 11, we employ a publisher-subscriber communication model. The satellite

simulator and the control algorithm act as ROS2 nodes that function as publishers and subscribers, creating a closed-loop

system. ROS2 handles the data exchange between the satellite simulator and the control algorithm through predefined

topics:

• SatState: Contains the satellite’s position, velocity, quaternion, angular velocity, and reaction wheel angular

velocity.

• DesState: Contains desired quaternions, angular velocity, and acceleration.

• SatConfig: Provides configuration settings, including the satellite’s moment of inertia, flywheel moment of

inertia, and reaction wheel configurations.

• AdptCtrlOut: Contains computed torques, the estimated RW health parameters, and the ICL term from the

adaptive algorithm to the satellite simulator.
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Fig. 11 Software-in-the-loop (SIL) simulation architecture.

The flow of the SIL simulation is as follows. First, the satellite simulator generates the current state of the simulated

satellite based on initial conditions or previous state data. This state data is published to the relevant ROS2 topics

(SatState, DesState, and SatConfig). Next, the controller algorithm, running on the Jetson Nano as another ROS2

node, subscribes to these topics, and processes the incoming data to compute the necessary control torques, the estimated

RW health parameters, and the 𝜆 term. The computed controller outputs are published to the AdptCtrlOut topic. The

satellite simulator, which subscribes to the AdptCtrlOut topic, receives the control inputs, which are then applied to

update the state of the satellite in the next simulation cycle. This closed-loop process repeats with continuous interaction

between the simulation and the control algorithms.

Test Case 5 was used as the representative test scenario for the SIL test and was conducted over 27.8 hours of

wall-clock time (100,000 seconds), without any simulation time acceleration. The controller code was implemented

in Python by translating the original MATLAB/Simulink code. The controller runs concurrently with the satellite

simulator at a rate of 10 Hz. Euler integration method was used to update the estimate 𝜽. During the SIL test, three

performance metrics, including execution time (milliseconds), CPU load (%), and memory usage (%), were recorded.

The execution time was measured for every control loop step while CPU load (%), and memory usage were logged with

a separate script running at 1 Hz.

E. Results and Discussion

The simulations performed in Cases 1 & 2 illustrate the importance of the ICL term. Looking at Figs. 3b and 4d it

can be observed that when the ICL term is activated, the controller is able to effectively estimate the correct health value

for all RWs, specifically the fact that RW 3 loses all of its effective performance. In the simulataion with no ICL term,
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the estimated RW health parameters in 𝜽 do not converge to their real values. This is expected because the stability

result from theorem 1 does not ensure convergence of the estimation error 𝜽 . The periods of increased growth in 𝜆 at

720, 1440, 2000 seconds are indicative of the system being excited due to the change in pointing reference. During

these periods where the RWs are being more active to alter the pointing of the satellite, the system is able to gather

input-output data through the ICL term until the threshold is reached and accurate estimation is guaranteed thereafter.

This is evident in Fig. 3b as the exponential decay to 0% health occurs when the threshold is reached, as expected from

theorem 2.

In both scenarios, it is important to note that the controller was still able to achieve accurate tracking of the attitude

guidance. However, without the ICL term, the controller was unable to learn the uncertain parameters of the system. In

both scenarios, the remaining RWs did not saturate with the failure of the third RW.

Cases 3 & 4 investigate the capabilities of the controller to handle a more complex system with an increased number

of RWs as well as multiple failures at different levels. In Case 3, both RWs 1 and 2 were set to completely fail and this

was correctly detected by the adaptive controller as seen in Fig. 7b. Once the threshold was crossed, and the system was

sufficiently excited, the estimation of the health of the RWs was correctly estimated. Likewise, in Case 4, where the RWs

1 and 2 were set to be degraded to 0 and 30% performance, respectively, the controller was able to accurately determine

the health and estimate these uncertainties. An important note for both Case 3 & 4, is that although two of the six RWs

failed, the other four RWs did not saturate, a critical factor in satellite attitude control, showing that no excessive control

effort was added once the FE condition was satisfied.

As in Cases 1 & 2, both simulations were able to accurately track the attitude guidance, showing that despite

multiple failures, the system was still able to perform its control task and provide correct estimations. However, one of

the key issues in the simulation scenarios, primarily evident in Case 1, was where the estimation of the health of the

non-degraded RWs is not as accurate as the degraded RW. This could be explained by a number of reasons, primarily

because the Simulink simulations include external disturbances and nonlinearities not accounted for in the design of the

controller. These disturbances are the same upper bounded disturbances in Eq. 1. A refinement of the design along with

further tuning of the key parameters outlined in Table 1 could also improve the performance of the estimation.

An interesting observation of the performance of the adaptive controller can be noted when running the same

simulation, with and without the ICL term. Figs. 12a and 12b show the torque allocated by the adaptive controller to

both RW 1 and 2 in each scenario with 6 total RWs. In both simulations, all parameters, but the ICL term, were kept

equal, whilst RW 1 and 2 were degraded to 0% performance. The key difference between these simulations is that in

Fig. 12a the ICL term is not active, whereas in Fig. 12b the ICL term is active. We can clearly see that when the ICL

term is active, and the learning threshold is reached (∼ 1500sec), the controller has correctly estimated that RW 1 and 2

are completely degraded, hence does not allocate any control torque to them. Figure 12a shows the contrary, where

the even though the RW’s are degraded, the adaptive controller does not learn the estimated health parameters and
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continues trying to allocate control torques to these reaction wheels.

(a) Controller allocated torque to RW’s 1 and 2 for the
simulation with no ICL term active.

(b) Controller allocated torque to RW’s 1 and 2 for the
simulation with the ICL term active.

Fig. 12 Comparison of allocated torques on the degraded RW’s when the ICL term is active or not.

Case 5 provides insight into the performance of the controller in long-term deployment scenarios as well as how

it reacts to realistic performance degradation profiles. As noted prior, the resetting of the learning parameters of the

controller every 10,000 seconds allows the controller to only use the most recent data collected in order to learn the

estimated health of the RWs. Figure 10 highlights that once converged, each time after the reset the estimated health of

RW 3 closely follows the true degradation level, whilst the remaining fully operational RWs remain close to 100%. It is

also clear that once the performance experiences the instantaneous drop to 20% and remains constant thereafter, the

estimation of all RW healths significantly improves, demonstrating the importance of Assumption 3 in the development

of the controller. We note that although the purpose of this case was to determine the capability of the estimation to

handle tougher profiles, the attitude tracking was verified to be achieved after each change it reference.

Whilst for a relatively slow degradation profile the controller is still able to closely follow the profile, this is aided by

regular resetting of the learning terms. It is evident that by resetting the learning parameters shortly after convergence

of the 𝜆 term is achieved, a more accurate estimation can be achieved, as only the nearest data is utilized. Likewise,

truncating the learning once the convergence is achieved, evidenced by the constant prediction values in Fig. 10, reduces

the impact of the time varying 𝜃 and improves performance. It is worth noting that the other RWs are also closely

estimated during this more complex simulation and the ICL resetting had no noticeable influence on the attitude tracking

performance of the controller.

Figure 13 shows the result from the SIL test of the same case 5 of the simulation. It was confirmed that SIL test

achieved a similar result with the simulation as shown in Figure 13a and 13b.
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(a) Estimated health parameters of the 4 RW in the SIL
test on the Jetson Nano.

(b) ICL term convergence for the SIL test.

Fig. 13 SIL test result of the same simulation as Case 5.

Of particular note is the reset and learning during and immediately after the degradation to 20%, around 65,000

seconds. Due to the truncated learning once the ICL term has converged, and the fact that this occurs slightly before the

sudden loss of performance, it is clear that the controller has no indication of this performance loss until the next reset.

Once the reset is completed and new data is used to converge the ICL term again, only then is the change in performance

accounted for. It is also noted that the further from the true performance the estimates are, the faster the convergence of

the ICL term, as with the 3 resets post the sudden drop in performance. This highlights the limitations of the controller

and the balance that must be struck between resetting the estimate and allowing the controller to converge and give the

true estimates.

Table 3 shows some key metrics that highlight the efficacy and benefits of this adaptive controller. For the Maximum

torque metric, which is compared to the exact same controller minus the adaptive learning component, we can see that

for Cases 1, 3 and 4 where the ICL term is active and the adaptive learning can occur, the utilization of the degraded

RW is significantly lower when the health is degraded to zero, whereas in Case 4 where RW 2 is degraded to 30%

performance, the controller allocates less torque relative to the degradation of the wheel. Likewise, it is clear that in

Cases 1, 3 and 4 the estimation error of both the healthy and degraded RWs are low compared to the large error exhibited

in Case 2 without ICL. As mentioned previously, small differences in the dynamics of the problem that are included in

the simulation but not the controller development are the cause for the small errors in the converged health estimates.

Table 4 summarizes key performance metrics obtained from the SIL test. It shows that the controller performs

reliably under the hardware constraints of the NVIDIA Jetson Nano. The controller executes each loop on an average

time of 5.25 ms, with a standard deviation of 1.16 ms and maximum spikes reaching 40.2 ms. The execution time is well

below the 100 ms time limit of the 10 Hz control loop. Even after accounting for the extra delay from Simulink-ROS2

message passing and other task schedules within the end-to-end control loop, the average execution time remains within
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the 100-ms sampling period. Because the SIL result is closely aligned with the numerical simulations, it indicates that

communication latency does not significantly impact control accuracy in this study. On average, the CPU load averaged

over all four cores of the Jetson Nano remains below 9%, and only a peak of 25% occurs at the start of the SIL test,

which is expected. Due to this low overall CPU usage by the control algorithm, a significant part of the memory is still

available for running auxiliary computations and tasks that may be required by other subsystems onboard. The memory

consumption is stable at an average of 17.7%, with only minor fluctuation (standard deviation of 0.04%) observed

throughout the SIL simulation.

Table 4 Performance metrics of the controller from SIL test.

Metric Execution Time (ms) CPU Load (%) Memory Usage (%)
Average 5.25 8.97 17.7

Maximum 40.2 25.02 17.8
Std Dev 1.16 1.38 0.04

VI. Conclusion
In this work, an ICL-based adaptive controller that can simultaneously estimate and compensate for the degradation

of reaction wheels was designed. Through the implementation of an adaptive update law that incorporates integral

concurrent learning, the controller successfully estimated the uncertain parameters, namely the RWs health. The finite

excitation condition was verified online and the uncertain parameters estimation converged exponentially afterwards, as

expected from the presented Lyapunov-based stability analysis. Posterior to the excitation condition being reached, the

adaptive controller shows that it uses the learned estimated health parameters to better allocate control torques on those

wheels still operable and not to those with degraded performance.

Five different scenarios were performed and the controller was able to ensure attitude tracking without saturation of

the RWs, as well as estimation of the varying types of degradation level for all RWs. Although the controller was able to

operate to auspiciously achieve global exponential tracking despite the multiple RW failures induced in simulation,

future work could include the integration of robustness to additive disturbances in this type of controller, since these are

expected to affect the stability result for both state and estimation errors.

SIL simulation results confirm that the controller can be deployed on an NVIDIA Jetson Nano. We demonstrate that

the controller meets the 10 Hz execution-rate requirement while maintaining minimal resource utilization throughout

the SIL simulation. These promising results set the stage for the next step, which is to further validate the controller in

the hardware-in-the-loop (HIL) simulation, where a more comprehensive analysis of communication latency will be

carried out.
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