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Estimating drag-related parameters in Low Earth Orbit (LEO) remains a challenge due
to uncertainties in atmospheric models and spacecraft physical properties. This paper takes
inspiration from the Sparse Identification of Nonlinear Dynamics (SINDy) technique from
Machine Learning (ML) to propose a Concurrent Learning-based adaptation law, modified
with a Bregman divergence-derived term, that learns the experienced differential drag when
modeled as a large collection of nonlinear functions with unknown coefficients, while ensuring
tracking of desired relative orbital states between a chaser and a target spacecraft. The stability
of the controller is assessed via Lyapunov-based stability analysis and performance evaluated
through numerical simulations. The numerical results show that the proposed controller
can simultaneously ensure relative states tracking and identify a sparse representation of the
differential drag acceleration in the LVLH frame. This work combines traditional adaptive
control with an ML-based strategy to enable real-time identification with convergence guarantees,
making the framework well-suited for safety-critical aerospace applications where large datasets
are often unavailable.

I. Introduction
As the number of space missions involving multiple satellites increases, so does the need to make spacecraft more

autonomous. In Low Earth Orbit (LEO), the most populated orbital regime with an increasing number of valuable
assets, a spacecraft’s ability to adapt and learn from its environment becomes critically important.

A promising technique for autonomous and cost-effective maneuvering in LEO is Differential Drag (DD), which
exploits differences in atmospheric drag experienced by spacecraft to generate controlled relative motion. DD-based
maneuvering has evolved from linearized, open-loop guidance strategies [1, 2], to adaptive [3] and optimal [4] control
methods, with demonstrated success in on-orbit station-keeping operations by commercial satellite constellations as a
propellant saving technique [5, 6]. Similar efforts have been made to adopt a higher fidelity relative-motion models
and exploit additional aerodynamic effects (e.g., lift) to increase control authority [7–11]. However, most DD control
strategies rely on accurate knowledge (or reliable online estimates) of drag-related parameters to allocate the differential
drag required by control laws on the involved spacecraft, which can include the effect of atmospheric density and
ballistic/drag coefficients, both highly uncertain quantities.

Estimation of drag-related parameters is difficult because atmospheric density is highly uncertain. Several semi-
empirical atmospheric models, such as Harris-Priester [12] and NRLMSISE-00 [13], and neural network-based [14]
exist but still show prediction error due to changing space-weather conditions. Similarly, drag/ballistic coefficients
depend on spacecraft geometry, attitude, and surface properties, and are often only approximately known [15]. These
issues motivate online learning strategies that can improve drag-acceleration reconstruction directly from onboard
measurements, without relying on large datasets or computationally expensive identification routines or models.

Lyapunov-based adaptive control techniques have been explored to compensate for uncertainties in these drag-related
parameters [3]. In prior work, we introduced an adaptive control strategy to simultaneously perform DD-based
maneuvers and estimate key drag-related parameters under formal convergence guarantees [16–18]. The control strategy
incorporated the Integral Concurrent Learning (ICL) adaptation technique [19], which allows online collection of
input-output data and ensures convergence of estimated model parameters to their true values, provided a verifiable
Finite Excitation (FE) condition is satisfied. While the results in [16] were promising, they required expressing the
spacecraft relative dynamics and the atmospheric density model in simplified forms to enable the use of ICL, ultimately
limiting the applicability of the estimation in more or complex scenarios.
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In this paper we consider a two-spacecraft scenario where a chaser maneuvers using actuation mechanisms other
than DD. The focus is not on executing DD-based maneuvers, but on developing a more flexible and general framework
for learning portions of the spacecraft dynamics, e.g., the experienced differential drag, using only measurable state data
and a large library of nonlinear functions. The application of the learning strategy to this scenario has the potential to
enable its use for control allocation of DD-based control laws, and illustrates its applicability on a wide range of space
applications where dynamics are not accurately known.

We take inspiration from the ML technique known as Sparse Identification of Nonlinear Dynamics (SINDy) [20],
which formulates a sparse regression problem using batches of data to learn all or part of the uncertain Equations of
Motion (EoMs) describing a dynamic system. The data consists of system state measurements, their time-derivatives,
and applied control inputs[21]. SINDy leverages the fact that most physically realizable systems have dynamics governed
by a few dominant terms, making their EoMs sparse in a high-dimensional nonlinear function space. This method has
been successfully used to discover EoMs of multiple systems from data [20], and in control contexts when combined
with Model Predictive Control (MPC) [22, 23]. However, it relies on collecting large amounts of data and executing
iterative algorithms to enforce sparsity, features that limit its applicability for onboard spacecraft operations.

To address these limitations, we recognize its similarities with Concurrent Learning (CL) in terms of the input-output
data required for estimation and the formulation of the underlying regression problem. We propose a modified
CL-inspired online adaptation law with sparsity enforcement. This approach enables us to express the uncertain terms
in the EoMs as a linear parameterization over an arbitrarily large library of nonlinear functions, each associated with an
unknown coefficient. We then enforce sparsity in the coefficients matrix, i.e., the EoMs are represented using a relatively
small number of active terms.

To ensure state tracking and sparse identification, we explore the use of a Lyapunov-Bregman function as part of the
adaptive controller design. This function incorporates a Bregman divergence term [24], a non-Euclidean "distance"
measure designed in this case to encourage sparsity in the learned coefficients. This approach is motivated by the growing
interest in connecting adaptive control with ML concepts [25–27], and recent developments based on incorporating
Bregman divergence into candidate Lyapunov functions [28–30].

This paper is structured as follows: Section II introduces the relative dynamics and differential drag modeling,
Section III presents the control design, Section IV provides the proof of stability analysis, Section V and VI explain the
simulation setup and the numerical simulation results, and Section VII concludes the paper and outline future work.

II. Dynamics Modeling
Consider a pair of satellites, a target 𝑡 and a chaser 𝑐 in a circular Low Earth Orbit (LEO), as illustrated in Fig. 1.

The target is assumed to follow a circular orbit, while the chaser performs relative maneuvers using thrusters, and both
spacecraft are subjected to unknown time-varying differential drag. This section describes the relative dynamics and the
differential drag model in a manner that enables the application of SINDy-inspired parameterization and estimation
using an adaptive concurrent learning law. Note that the relative dynamics can be modeled using Clohessy-Wiltshire
[31], Schweighart-Sedwick equations [7], or any other valid representation, as the specific choice does not affect the
development of the estimation strategy.

Target

Chaser

𝑧̂

𝑥$

𝑦$
Direction of motion

Fig. 1 Chaser-target satellites in the LVLH frame

.
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A. Spacecraft Relative Dynamics
Let I denote the Earth-Centered Initial (ECI) frame with origin locates at the Earth’s center of mass. î𝑧 points

to the North Celestial Pole, î𝑥 points toward the vernal equinox, and î𝑦 completes the right-handed triad [32]. Let L
denote the Local–Vertical/Local–Horizontal (LVLH) frame attached to the target. The origin of the LVLH frame is at
the center of the target where x̂ axis is pointing from the Earth toward the target, ẑ axis is pointing to the orbital angular
momentum, and ŷ axis complete the right-handed coordinate system[7, 31].

The chaser-to-target relative position expressed in L is defined as

x ≜
[
𝑥 𝑦 𝑧

]⊤
∈ R3, (1)

In this paper, the relative dynamics is modeled using the Clohessy–Wiltshire (CW) equations for the circular orbit
with mean motion 𝑛[31]. The equation of motion based on the CW dynamics can be written in the compact form as

¥x = 𝐶 ¤x + 𝐺 x + u + Δa𝐿
𝐷 , (2)

where ¤x is the relative velocity and ¥x is relative acceleration, Δa𝐿
𝐷
∈ R3 is the differential acceleration expressed in the

LVLH frame, and

𝐶 =


0 2𝑛 0

−2𝑛 0 0
0 0 0

 , 𝐺 = diag
(
3𝑛2, 0, −𝑛2) . (3)

The unknown disturbance is the differential drag acceleration, which we model in the next subsection.

B. Atmospheric Drag Model
For each spacecraft 𝑖 ∈ {𝑐, 𝑡}, its position and velocity in the ECI frame I is r𝐼

𝑖
, v𝐼

𝑖
respectively. We express the

velocity of the spacecraft 𝑖 relative to the Earth atmosphere as

v𝐼
rel,𝑖 = v𝐼

𝑖 − 𝝎𝐸 × r𝐼𝑖 , (4)

where 𝝎𝐸 denotes the Earth rotation vector. We define,

𝑣rel,𝑖 ≜


v𝐼

rel,𝑖


, v̂𝐼

rel,𝑖 ≜
v𝐼

rel,𝑖

𝑣rel,𝑖
, (5)

as the relative speed and its unit direction, respectively.
The drag acceleration of the spacecraft 𝑖 in the ECI is modeled as

a𝐼
𝐷,𝑖 (𝑡) = − 𝐵𝑖 𝜌atm,𝑖 (𝑡) 𝑣2

rel,𝑖 v̂𝐼
rel,𝑖 , (6)

where
𝐵𝑖 ≜

1
2
𝐶𝐷,𝑖𝐴𝑖

𝑚𝑖

[m2/kg] (7)

is the ballistic coefficient based on the drag coefficient, effective drag area 𝐴𝑖 , and mass 𝑚𝑖 of the spacecraft 𝑖.
To model the atmosphere density, we adopted the simplified density model used in [10] and [16]. For each spacecraft

𝑖 ∈ {𝑐, 𝑡}, the atmosphere density is defined as

𝜌atm,𝑖 (𝑡) = 𝐷𝑖,1 + 𝐷𝑖,2 sin(𝑛𝑡) + 𝐷𝑖,3 cos(𝑛𝑡) = 𝑠⊤ (𝑡) 𝐷𝑖 , (8)

where
𝑠(𝑡) ≜

[
1 sin(𝑛𝑡) cos(𝑛𝑡)

]⊤
, 𝐷𝑖 ≜

[
𝐷𝑖,1 𝐷𝑖,2 𝐷𝑖,3

]⊤
∈ R3 (9)

where 𝑛 is the mean motion. By substituting the (8) into (6), we obtain

a𝐼
𝐷,𝑖 (𝑡) =

(
− 𝐵𝑖 𝑣

2
rel,𝑖 v̂𝐼

rel,𝑖 𝑠
⊤ (𝑡)

)
𝐷𝑖 , (10)
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C. SINDy-Inspired Representation of Differential Drag
Applied to this problem, the standard (offline) SINDy algorithm would collect 𝑚 ∈ Z>0 samples of x, x, and x,

and the collected data matrix is formed as

𝑋 =
[
𝒙(𝑡1 ) 𝒙(𝑡2 ) · · · 𝒙(𝑡𝑚 )

]𝑇 ∈ R𝑚×3, (11)

with ¤𝑿 and ¥𝑿 containing the corresponding time derivatives. A library Γ(𝑋, ¤𝑋) ∈ R𝑚×𝑝 of 𝑝 ∈ Z>0 candidate
nonlinear functions of 𝑋 , is constructed as

Γ (𝑿, ¤𝑿 ) =

| | | | |
1 𝑓1 (𝒙, ¤𝒙, 𝑡𝑖 ) 𝑓2 (𝒙, ¤𝒙, 𝑡𝑖 ) · · · 𝑓𝑝−2 (𝒙, ¤𝒙, 𝑡𝑖 ) 𝑓𝑝−1 (𝒙, ¤𝒙, 𝑡𝑖 )
| | | | |

 , for 𝑖 = 1, · · · , 𝑚 (12)

where 𝑓𝑘 (·) : R6 → R denotes an user-defined nonlinear function in (·), and 𝑘 = 1, 2, · · · , 𝑝 − 1. The problem is
then presented as a sparse regression to find the matrix Ξ = [𝝃1, 𝝃2, 𝝃3] ∈ R𝑝×3 in

¥𝑿 = 𝐹 (𝑿, ¤𝑿) + Γ(𝑿, ¤𝑿)Ξ +𝑈 (13)

where 𝝃 𝒋 ∈ R𝑝 is the sparse vector of coefficients determining which nonlinearities are active for the 𝑗 𝑡ℎ state dynamics,
and 𝐹 (𝑋, ¤𝑋) ∈ R𝑚×3, and 𝑈 ∈ R𝑚×3 are matrices with data samples collected from the known portion of the system’s
dynamics and the control inputs , respectively. SINDy then requires 𝑚 data samples of the states, their time derivatives,
known dynamics and control inputs to run a sparse regression algorithm (e.g., Lasso regression [33]).

Motivated by this structure, we express the unknown differential drag term using the SINDy-inspired representation
over a rich library of functions as

Δa𝐿
𝐷 (x, ¤x, 𝑡) = 𝑌 (x, ¤x, 𝑡) 𝜽 , (14)

where 𝑌 (x, ¤x, 𝑡) ∈ R3×3𝑝 is a regressor built from a library Γ(x, ¤x, 𝑡) ∈ R1×𝑝 and 𝜽 ∈ R3𝑝 contains the corresponding
(unknown) coefficients. In this work, the library Γ(x, ¤x, 𝑡) is built using the LVLH components of the velocities relative
to the atmosphere of both spacecraft, and the atmospheric density model.

To build the library, first, we introduce

v𝐿
rel,𝑖 = 𝑅𝐼2𝐿 (𝑡) v𝐼

rel,𝑖 =
[
𝑣rel,𝑖𝑥 𝑣rel,𝑖𝑦 𝑣rel,𝑖𝑧

]⊤
, 𝑖 ∈ {𝑐, 𝑡}, (15)

as the components of the relative velocity expressed in LVLH. We define the following term that depends on the mean
motion 𝑛 of the target as

𝑆(𝑡) ≜ sin(𝑛𝑡), 𝐶 (𝑡) ≜ cos(𝑛𝑡). (16)

We build the library for the chaser as

Φ𝑐 (𝑡) =
[
𝑣rel,𝑐𝑥 , 𝑣rel,𝑐𝑥𝑆, 𝑣rel,𝑐𝑥𝐶, 𝑣rel,𝑐𝑦 , 𝑣rel,𝑐𝑦𝑆, 𝑣rel,𝑐𝑦𝐶,

𝑣rel,𝑐𝑧 , 𝑣rel,𝑐𝑧𝑆, 𝑣rel,𝑐𝑧𝐶
]
∈ R1×9,

(17)

and similarly, the library for the target as

Φ𝑡 (𝑡) =
[
𝑣rel,𝑡 𝑥 , 𝑣rel,𝑡 𝑥𝑆, 𝑣rel,𝑡 𝑥𝐶, 𝑣rel,𝑡 𝑦 , 𝑣rel,𝑡 𝑦𝑆, 𝑣rel,𝑡 𝑦𝐶,

𝑣rel,𝑡 𝑧 , 𝑣rel,𝑡 𝑧𝑆, 𝑣rel,𝑡 𝑧𝐶
]
∈ R1×9.

(18)

We then add the scalar factors, including the ballistic coefficients and squared velocities into the library

𝐾𝑐 (𝑡) = −𝐵𝑐 𝑣
2
rel,𝑐, 𝐾𝑡 (𝑡) = +𝐵𝑡 𝑣

2
rel,𝑡 , (19)

and by stacking all the library of functions of the chaser and target, we obtain

Γ(x, ¤x, 𝑡) =
[
𝐾𝑐 (𝑡)Φ𝑐 (𝑡) 𝐾𝑡 (𝑡)Φ𝑡 (𝑡)

]
∈ R1×18. (20)

The regressor 𝑌 (x, ¤x, 𝑡) ∈ R3×54 can be built using the Kronecker product
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𝑌 (x, ¤x, 𝑡) = Γ(x, ¤x, 𝑡) ⊗ 𝐼3, (21)

and the differential drag can be expressed using this newly defined term as

Δa𝐿
𝐷 = 𝑌 (x, ¤x, 𝑡) 𝜽 + 𝝐 = (Γ(x, ¤x, 𝑡) ⊗ 𝐼3) 𝜽 + 𝝐 , (22)

where 𝜖 ∈ R3 represents an approximation error whose norm can be upper bounded by a constant, and 𝜽 ∈ R54. Finally,
we substitute the (14) and (21) into the CW dynamics (2) to obtain the equation that is used in the subsequent control
design section as

¥x = 𝐶 ¤x + 𝐺x + u + 𝑌 (x, ¤x, 𝑡) 𝜽 + 𝝐 . (23)

In this form, all the uncertainty is captured into the unknown coefficient vector 𝜽 . Although this differential drag model
could be represented in a more compact form using additional knowledge about the system, as done in our previous work
[16], here we allow the model to calibrate a significantly larger set of coefficients to test the online sparse identification
approach we propose.

III. Control Design

A. Control objective
We introduce x𝑑 (𝑡) as the desired relative trajectory and define the position and velocity tracking errors as

e ≜ x − x𝑑 , ¤e ≜ ¤x − ¤x𝑑 , (24)

and introduce the auxiliary state error

r ≜ ¤e + 𝛼 e, (25)

where 𝛼 ∈ R3×3 is a symmetric positive definite control gain. The control objective is to design an adaptive controller
that ensures convergence of the error states and identification of a sparse vector of coefficients 𝜽 (𝑡). The control
objective can then be set to

∥𝒆∥ → 0, ∥𝒓∥ → 0, (26)

and

∥𝜽𝒔 ∥ → 0 (27)

where 𝜽𝒔 ∈ R𝑞 = 𝜽𝒔 − 𝜽𝑠 , and 𝜽𝑠 ∈ R𝑞 is a vector containing the 𝑞 ∈ Z>0 most relevant coefficients in 𝜽 .

B. Control Development
Let us propose a two-stage approach as follows: A “warm-up" stage where the controller is focused on ensuring

stability of the tracking errors 𝒆 and 𝒓, bounded estimates 𝜽 , and determining which are the most relevant coefficients
𝜽𝒔; and an “identification" stage where the controller aims to ensure convergence of 𝒆, 𝒓 and 𝜽𝒔 .

This two-stage approach is inspired by the SINDy assumption that any dynamical system can be approximated by
small number of active terms from a large library of functions. This assumption can be summarized in our context as
follows:

Assumption 1: The dynamics in (23) can be represented using a subset of active nonlinear functions as

¥x = 𝐶 ¤x + 𝐺x + u + 𝑌𝑠 (x, ¤x, 𝑡) 𝜽𝒔 + 𝝐1, (28)

where 𝑌𝑠 (x, ¤x, 𝑡) ∈ R3×𝑞 is a reduced regressor containing only the columns associated to the most relevant functions,
and 𝝐1 ∈ R3 is the new approximation error whose norm can be upper bounded by a constant.
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During the warm-up stage, no information about the most relevant functions is available. Therefore, the adaptive
controller must be designed using the full dynamics in (23). Differentiating the equation (25) and plugging in the
equation of motion (23), we obtain

¤r = ¥e + 𝛼 ¤e = ¥x − ¥x𝑑 + 𝛼 ¤e (29)
= 𝐶 ¤x + 𝐺 x + u + 𝑌 (x, ¤x, 𝑡) 𝜽 + 𝝐 − ¥x𝑑 + 𝛼 ¤e. (30)

Let us propose the following control law

u = −𝐶 ¤x − 𝐺 x − 𝛼 ¤e − 𝐾𝑟 r − 𝑘𝑒 e + ¥x𝑑 − 𝑌 (x, ¤x, 𝑡) 𝜽̂ , (31)

where 𝐾𝑟 ∈ R3×3 is a symmetric positive definite control gain, 𝑘𝑒 ∈ R>0 is a scalar control gain, and 𝜽̂ ∈ R54 is an
estimate of 𝜽 . Plugging the proposed control law into the (30) to obtain the closed-loop error dynamics as

¤r = −𝐾𝑟 r − 𝑘𝑒 e + 𝑌 (x, ¤x, 𝑡) 𝜽̃ + 𝝐 , (32)

To address the uncertainties in differential drag, let us propose the following gradient-based adaptation law

¤̂𝜽 = proj
{
𝛾

[
∇2𝜓(𝜽)

]−1
𝑌 (𝒙)𝑇 𝒓

}
. (33)

where 𝛾 ∈ R>0 is a positive adaptation gain, proj{·} denotes a smooth projection algorithm such as the one in [34] that
keeps the estimates within known user-defined bounds, and ∇2𝜓

(
𝜽
)
∈ R54×54 is the Hessian of the convex function

𝜓

(
𝜽
)
∈ R>0 defined as

𝜓

(
𝜽
)
=

54∑︁
𝑖=1

√︃
𝜃2
𝑖
+ 𝛿2, 𝛿 << 1, (34)

whose motivation will be explained in the next section.
During the identification stage, we assume that the most relevant coefficients can be determined, enabling the

representation of the open-loop error system as

¤r = 𝐶 ¤x + 𝐺 x + u + 𝑌𝑠 (x, ¤x, 𝑡) 𝜽𝒔 + 𝝐1 − ¥x𝑑 + 𝛼 ¤e. (35)

The control law can then be modified as

u = −𝐶 ¤x − 𝐺 x − 𝛼 ¤e − 𝐾𝑟 r − 𝑘𝑒 e + ¥x𝑑 − 𝑌𝑠 (x, ¤x, 𝑡) 𝜽̂𝑠 , (36)

resulting in the closed-loop error dynamics

¤r = −𝐾𝑟 r − 𝑘𝑒 e + 𝑌𝑠 (x, ¤x, 𝑡) 𝜽̃𝑠 + 𝝐1, (37)

and let us propose a CL-based adaptation law as

¤̂𝜽𝒔 = proj

{
𝛾

[
∇2𝜓(𝜽𝒔)

]−1
𝑌𝑠 (𝒙𝑖)𝑇 𝒓𝑖 + 𝛾

[
∇2𝜓(𝜽𝑠)

]−1
𝐾𝐶𝐿

𝑁𝑠∑︁
𝑖=1
𝑌𝑇
𝑠𝑖

(
¥𝒙𝑖 − 𝐶 ¤𝒙𝑖 − 𝐺𝒙𝑖 − 𝒖𝑖 − 𝑌𝑠𝑖𝜽𝑠

)}
(38)

where 𝑁𝑠 ∈ Z>0 denotes a finite number of samples and (·)𝑖 denotes the 𝑖𝑡ℎ sample of (·). This adaptation law
“collects" input-output data through the summation to help identify, provided a Finite Excitation (FE) condition is
satisfied, the real values of the coefficients in 𝜽𝑠 .
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IV. Stability Analysis

A. Warm-up stage
To facilitate the subsequent stability analysis let 𝜼 ∈ R6 =

[
𝒆𝑇 , 𝒓𝑇

]𝑇 be an augmented error state vector,
𝜒 = min {𝜆𝑚𝑖𝑛 {𝑘𝑒𝛼} , 𝜆𝑚𝑖𝑛 {𝐾𝑟 } − (1/2)}, 𝜆𝑚𝑖𝑛{·} denote the minimum eigenvalue of {·}, 𝑐 = (1/2)𝜖2, ∥𝝐 ∥ ≤ 𝜖 ,
and 𝜅𝑤 , 𝜅𝑤 , 𝛽𝑤 ∈ R>0 be known constants that bound the subsequent Lyapunov function 𝑉 : R60 → R>0 as

𝜅𝑤 ∥𝜼∥2 ≤ 𝑉 ≤ 𝜅𝑤 ∥𝜼∥2 + 𝛽𝑤 , (39)

where 𝛽𝑤 can be used due to the projection algorithm in the adaptation law, Eq. (33).

Assumption 2: There exists a finite warm-up time 𝑡𝑤 ∈ R>0 after which the time-varying adaptation gain
[
∇2𝜓(𝜽)

]−1

has adjusted its diagonal entries so that the 𝑞 largest are associated to the 𝑞 most relevant parameters.

Theorem 1. Given the spacecraft relative dynamics in Eq. (2), the control and adaptation laws in Eqs. (31) and (33),
respectively, yield a globally ultimately bounded result for the error states in 𝜼 such that

∥𝜼∥ ≤
√︄
𝜅𝑤

𝜅𝑤
∥𝜼(𝒕0)∥exp

(
− 𝜒

2𝜅𝑤
(𝑡 − 𝑡0)

)
+

√︄
𝛽𝑤

𝜅𝑤
+

√︄
𝑐𝜅𝑤

𝜒𝜅𝑤
, (40)

while the estimation error 𝜽 remains bounded. Moreover, under Assumption 2, the 𝑞 most relevant s can be determined
from

[
∇2𝜓(𝜽)

]−1 after 𝑡 = 𝑡𝑤 .

Proof. Consider the following Lyapunov candidate function

𝑉 =
𝑘𝑒

2
𝒆𝑇 𝒆 + 1

2
𝒓𝑇 𝒓 + 1

𝛾
𝑑𝜓

(
𝜽 ∥ 𝜽̂

)
. (41)

Here, we introduced the Bregman divergence term 𝑑𝜓 (𝜽∥𝜽) ∈ R>0, a non-Euclidean “distance" measure defined as

𝑑𝜓

(
𝜽 ∥ 𝜽

)
= 𝜓 (𝜽) − 𝜓

(
𝜽
)
−

(
𝜽 − 𝜽

)𝑇
∇𝜓

(
𝜽
)
, (42)

where 𝜓

(
𝜽
)

is an arbitrary strongly convex function, in this case defined as in Eq. (34). This divergence is guaranteed
to be non-negative for strongly convex functions, making it suitable for use in the Lyapunov function, Eq. (41).

It can be shown via Hadamard’s Lemma that the time derivative of the Bregman divergence can be expressed in
terms of the Hessian of 𝜓

(
𝜽
)
, i.e., ∇2𝜓(𝜽), as [29]

𝑑

𝑑𝑡
𝑑𝜓

(
𝜽 ∥ 𝜽

)
= −𝜽𝑇∇2𝜓

(
𝜽̂
)
¤̂𝜽 , (43)

where 𝜽 = 𝜽 − 𝜽 . The Hessian ∇2𝜓(𝜽) for our convex function is

∇2𝜓(𝜽) = diag

(
𝛿2

(𝜃2
1 + 𝛿2)3/2

, · · · , 𝛿2

(𝜃2
3𝑝 + 𝛿2)3/2

)
. (44)

The diagonal structure of
[
∇2𝜓(𝜽)

]−1 acts as a varying adaptation gain that “freezes adaptation" for a small 𝜃𝑖
parameter in 𝜽 (i.e., small rate of change for small, near-zero entries) and allows stronger adaptation for larger and
more relevant parameters, thereby promoting sparsity. This property can be exploited to determine the most relevant
functions during adaptation, i.e., those associated to the largest 𝑞 gains in

[
∇2𝜓(𝜽)

]−1 after an user-defined warm-up
time 𝑡 = 𝑡𝑤 , as described in Assumption 2.

Taking the time derivative of Eq. (41), plugging in Eq. (32), and using the definition in Eq. (25) yields

¤𝑉 = 𝑘𝑒𝒆
𝑇 (r − 𝛼e) + 𝒓𝑇

(
−𝐾𝑟 r − 𝑘𝑒 e + 𝑌 (x, ¤x, 𝑡) 𝜽̃ + 𝝐

)
− 1
𝛾
𝜽
𝑇∇2𝜓

(
𝜽̂
)
¤̂𝜽 , (45)

7



and further substituting the adaptation law in Eq. (33) yields

¤𝑉 = −𝑘𝑒𝒆𝑇𝛼e − r𝑇𝐾𝑟r + r𝑇𝝐 . (46)

Applying Cauchy-Schwarz and Young’s inequalities such that 𝒓𝑇𝝐 ≤ 1
2 ∥𝑟 ∥

2 + 𝑐, the above expression can be rewritten as

¤𝑉 ≤ −𝜒∥𝜼∥2 + 𝑐. (47)

Using the bounds in Eq. (39) yields

¤𝑉 ≤ − 𝜒

𝜅𝑤
𝑉 +

(
𝜒𝛽𝑤

𝜅𝑤
+ 𝑐

)
, (48)

and by Comparison lemma we obtain

𝑉 ≤
(
𝑉 (𝑡0) − 𝛽𝑤 − 𝑐𝜅𝑤

𝜒

)
exp

(
− 𝜒

𝜅𝑤
(𝑡 − 𝑡0)

)
+ 𝛽𝑤 + 𝑐𝜅𝑤

𝜒
, (49)

using the bounds of 𝑉 again on both sides yields the expression in Eq. (40). This results in the error states, i.e., ∥𝜼∥
converging exponentially up to an ultimate bound of size

√︃
𝛽𝑤/𝜅𝑤 +

√︃
𝑐𝜅𝑤/𝜒𝜅𝑤 .

□

B. Identification Stage
To facilitate the subsequent stability analysis let 𝜅, 𝜅, 𝛽 ∈ R>0 be known constants that bound the subsequent

Lyapunov function 𝑉1 : R6+𝑞 → R>0 as

𝜅∥𝜼∥2 ≤ 𝑉1 ≤ 𝜅∥𝜼∥2 + 𝛽, (50)

where 𝛽 can be used due to the projection algorithm in the adaptation law, Eq. (38).

Assumption 3: There exists some finite time 𝑇 ∈ R>0 > 𝑡𝑤 such that the following FE condition is satisfied

𝜆𝑚𝑖𝑛

{
𝑁𝑠∑︁
𝑖=1
𝑌𝑇
𝑠𝑖
𝑌𝑠𝑖

}
≥ 𝜆̄, ∀ 𝑡 > 𝑇 (51)

where 𝜆̄ ∈ R>0 is some user-defined constant.
Consider also the alternative bounds for the Lyapunov function

𝜁 ∥𝒛∥2 ≤ 𝑉1 ≤ 𝜁 ∥𝒛∥2, (52)

where 𝒛 =
[
𝒆𝑇 , 𝒓𝑇 , 𝜽𝒔

]𝑇 , and the fact that estimates 𝜽𝑠 remain in a compact set, enforced by the projection algorithm,
was used to bound 𝑑𝜓 with quadratic expressions of



𝜽𝒔

.
The two standard theorems for CL-based adaptive controllers are subsequently presented, Theorem 2 covers the

period 𝑡𝑤 < 𝑡 ≤ 𝑇 (i.e., before the FE condition is satisfied), and Theorem 3 presents the stability result for 𝑡 > 𝑇

Theorem 2. Given the spacecraft relative dynamics in Eq. (2), the control and adaptation laws in Eqs. (36) and (38),
respectively, yield a globally ultimately bounded result for the error states in 𝜼 such that

∥𝜼∥ ≤
√︄
𝜅

𝜅
∥𝜼(𝒕𝒘)∥exp

(
− 𝜒

2𝜅
(𝑡 − 𝑡𝑤)

)
+

√︄
𝛽

𝜅
+

√︄
𝑐1𝜅

𝜒𝜅
, ∀ 𝑡𝑤 < 𝑡 ≤ 𝑇 (53)

while the estimation error 𝜽𝒔 remains bounded.
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Proof. Consider the modified Candidate Lyapunov function that accounts only for the most relevant subset of 𝜽 , namely
𝜽𝒔 , which contains the 𝑞 most relevant functions from the library

𝑉1 =
𝑘𝑒

2
𝒆𝑇 𝒆 + 1

2
𝒓𝑇 𝒓 + 1

𝛾
𝑑𝜓

(
𝜽𝒔 ∥ 𝜽̂𝑠

)
. (54)

Taking the time derivative, plugging in the closed loop error system in Eq. (37), using the definition in Eq. (25), and
substituting the control law in Eq. (36) yields

¤𝑉1 = 𝑘𝑒𝒆
𝑇 (r − 𝛼e) + 𝒓𝑇

(
−𝐾𝑟 r − 𝑘𝑒 e + 𝑌𝑠 (x, ¤x, 𝑡) 𝜽̃𝑠 + 𝝐1

)
− 1
𝛾
𝜽̃
𝑇

𝑠 ∇2𝜓(𝜽̂𝑠) ¤̂𝜽𝑠 . (55)

Consider the non-implementable form of the adaptation law in Eq. (38)

¤̂𝜽𝒔 = proj

{
𝛾

[
∇2𝜓(𝜽𝒔)

]−1
𝑌𝑠 (𝒙𝑖)𝑇 𝒓𝑖 + 𝛾

[
∇2𝜓(𝜽𝑠)

]−1
𝐾𝐶𝐿

𝑁𝑠∑︁
𝑖=1
𝑌𝑇
𝑠𝑖

(
𝑌𝑠𝑖𝜽𝑠 + 𝝐1𝒊

)}
. (56)

Substituting Eq. (56) into the Lyapunov derivative yields

¤𝑉1 = −𝑘𝑒𝒆𝑇𝛼e − r𝑇𝐾𝑟r + r𝑇𝝐1 − 𝜽𝒔
𝑇
𝐾𝐶𝐿

𝑁𝑠∑︁
𝑖=1
𝑌𝑇
𝑠𝑖
𝑌𝑠𝑖𝜽𝒔 − 𝜽

𝑇

𝑠

𝑁𝑠∑︁
𝑖=1
𝑌𝑠𝑖

𝑇𝝐1𝒊 . (57)

Before 𝑡 = 𝑇 , the matrix
∑𝑁𝑠

𝑖=1𝑌
𝑇
𝑠𝑖
𝑌𝑠𝑖 is at least positive semi-definite. Therefore, the corresponding term can be upper

bounded by zero during this period. The term 𝜽
𝑇

𝑠

∑𝑁𝑠

𝑖=1𝑌𝑠𝑖
𝑇𝝐1𝒊 can be upper bounded as




𝜽𝑇𝑠 𝑁𝑠∑︁

𝑖=1
𝑌𝑠𝑖

𝑇𝝐1𝒊






 ≤ 𝜉. (58)

where the facts that 𝜽𝒔 remains bounded due to the projection algorithm, the orbital quantities in 𝑌𝑠𝑖 are physically
limited, as well as ∥𝝐1∥ ≤ 𝜖1 with 𝜖1 ∈ R>0, were used.

The Lyapunov function derivative can then be upper bounded as follows

¤𝑉1 ≤ −𝜒∥𝜼∥2 + 𝑐1, (59)

where 𝑐1 = 𝜉 + 1
2 𝜖

2
1 .

From this point on, the procedure to find the upper bound of ∥𝜼∥ is identical as the one presented for Theorem 1,
but using the Lyapunov function bounds from Eq. (50), obtaining the result in (53).

□

Theorem 3. Given the spacecraft relative dynamics in Eq. (2), the control and adaptation laws in Eqs. (36) and (38),
respectively, yield a globally ultimately bounded result for the error states in 𝜼 and estimation error 𝜽𝑠 such that

∥𝒛∥ ≤
√︄
𝜁

𝜁
∥𝒛(𝑻)∥exp

(
− 𝜒1

2𝜁
(𝑡 − 𝑇)

)
+

√︄
𝑐1𝜁

𝜒1𝜁
, ∀ 𝑡 > 𝑇 (60)

Proof. Let us start from Eq. (57). Now, after the FE condition in Assumption 3 (i.e., Eq. (51)) is satisfied, the matrix∑𝑁𝑠

𝑖=1𝑌
𝑇
𝑠𝑖
𝑌𝑠𝑖 is guaranteed to be positive-definite . Therefore, ¤𝑉1 can be upper bounded as

¤𝑉1 ≤ −𝜒1∥𝒛∥2 + 𝑐1, (61)

where 𝜒1 = min
{
𝜒, 𝜆𝑚𝑖𝑛

{
𝐾𝐶𝐿

∑𝑁𝑠

𝑖=1𝑌
𝑇
𝑠𝑖
𝑌𝑠𝑖

}}
. Using the bounds of 𝑉1 in Eq. (52) yields

¤𝑉1 ≤ − 𝜒1

𝜁
𝑉1 + 𝑐1, (62)

and by Comparison lemma we get

𝑉1 ≤
(
𝑉1 (𝑇) −

𝑐1𝜁

𝜒1

)
exp

(
− 𝜒1

𝜁
(𝑡 − 𝑇)

)
+ 𝑐1𝜁

𝜒1
, (63)
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and further using the bounds in Eq. (52) yields the result in Eq. (60).
□

V. Simulation
To validate the proposed controller, we conducted a numerical simulation of the relative orbit motion of the

chaser-target spacecraft in low Earth orbit (LEO). The true translational dynamics of both spacecraft are propagated in
the Earth–Centered Inertial (ECI) frame using nonlinear two–body gravity that includes the effect of atmospheric drag.
The simulation is executed for 350 target orbits, equivalent to approximately 548 hours (≈ 22.8 days). This simulation
duration is chosen to provide sufficient time for the controller to learn/estimate the dynamics of the differential drag.

The initial orbit of the target spacecraft is a near-circular orbit, for which the orbital elements were chosen to match
the International Space Station (ISS) orbit with an altitude of approximately 470 km. The orbit elements of the target
are listed in Table 1. The chaser is initialized in a closeby orbit by randomly applying a small offset to the target’s
semi-major axis, eccentricity, inclination, and true anomaly, while keeping the same values of RAAN and argument
of perigee. Specifically, the variation of the chaser position are set to 𝑎𝑐 = 𝑎𝑡 + [0, 10] [km], 𝑒𝑐 = 𝑒𝑡 + [0, 2 × 10−4],
𝜈𝑐 = 𝜈𝑡 ± 0.04 [deg], respectively, and 𝑖𝑐 = 𝑖𝑡 − 0.01 [deg].

Table 1 Initial conditions for the target spacecraft.

𝑎𝑡 [km] 𝑒𝑡 𝑖𝑡 [deg] Ω𝑡 [deg] 𝜔𝑡 [deg] 𝜈𝑡 [deg]
6.845 × 103 5.0 × 10−4 51.64 229.18 286.07 0

Table 2 lists the parameters used to compute the true drag acceleration. In the simulations, the two spacecraft
have identical mass, but their drag coefficients are slightly different. The cross-sectional areas of both spacecraft
are set to vary in time to emulate tumbling and/or attitude maneuvers. The atmospheric density is simulated using
the Harris–Priester model[12]. As a result, the differential drag accelerations are time-varying and unknown to the
controller. The controller only relies on the SINDy-inspired library of functions to achieve state tracking and estimate
the differential drag.

Table 2 Spacecraft physical properties.

Parameter Target Chaser
Mass 𝑚 [kg] 50 50
Average area 𝐴 [m2] 2.0 2.8
Drag coefficient 𝐶𝐷 2.2 2.1

To rendezvous with the target, the chaser uses the control laws developed in Section III depending on the stage. The
control gains are presented in Table 3. The adaptation law combines a Bregman-based gradient term with a concurrent
learning term. The Bregman-Concurrent Learning adaptation gains are summarized in Table 4. Initially, the CL-based
input-out pair accumulation term is disabled for a duration referred to as the warm-up period, which is set to 80 target
orbital periods (𝑇𝑜𝑟𝑏). In all simulations, the CL term is kept fixed, i.e., no additional data accumulation through the
summation, after the FE condition threshold 𝜆̄ is first satisfied.

Table 3 Controller gains.

Gains Value
𝛼 1.0 × 10−3I
𝐾𝑟 1.0 × 10−8I
𝑘𝑒 3.0 × 10−6
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Table 4 Bregman–Concurrent Learning gains.

Parameter Value
FE threshold 𝜆̄ 600
CL gain 𝐾CL 10I
Learning gain 𝛾 5.0 × 10−6

Bregman regularization 𝛿 1.0 × 10−5

𝑞 8
Warm-up duration 80𝑇orb

VI. Results

A. Case A: Bregman-CL with warm-up + activated coefficient selection
The rendezvous maneuvers of the chaser in the LVLH frame over 350 orbits is shown ing Fig. 2, with Fig. 2a showing

the relative positions, Fig. 2b plotting the relative velocities, and Fig. 2d showing the trajectory plot. The controller
drives the chaser along a decaying spiral, and its trajectory converges smoothly toward the small neighborhood of the
origin within the first tens of hours. As seen in Fig. 2c, the control inputs remained bounded and decreased to zero.
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Fig. 2 Rendezvous maneuvers of the chaser spacecraft in LVLH frame.

The time history of the diagonal entries of
[
∇2𝜓(𝜽)

]−1 is shown in Fig. 3. Figure 3a shows overall trends of

11



Bregman’s gains, Fig 3b provides a zoomed-in view during the first 10 orbits and its decay, and Fig 3c shows the gains
around the end of the warm-up time 𝑡𝑤 . It can be seen that during this phase, Bregman’s gains (i.e.,

[
∇2𝜓(𝜽)

]−1)
evolve rapidly and then decay toward a nearly constant value. At the end of the warm-up time (after 80 orbits), as
shown in Fig 3c, it is noticeable that some terms are more active than others, which is a result of the Bregman sparsity
enforcement. This illustrates how introducing the Bregman term helps automatically promote sparsity. The controller
can select the gains that are more important without any manual gain tuning, which is quite effective, particularly in
this scenario, where we have a large number of coefficients (54 in this case). Among the 54, only 8 were used and the
irrelevant gains are reset to its initial value for the rest of the simulation as seen Fig. 3c.
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(a) Bregman’s gains over time
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(b) Zoomed-in view at the first 10 orbits
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(c) Zoomed-in view at the end of warm-up time

Fig. 3 Behavior of Bregman’s gains.

Figure 4 shows the FE metric 𝜆𝑚𝑖𝑛

{∑𝑁𝑠

𝑖=1𝑌
𝑇
𝑠𝑖
𝑌𝑠𝑖

}
. Initially, during the warm-up stage, 𝜆𝑚𝑖𝑛

{∑𝑁𝑠

𝑖=1𝑌
𝑇
𝑠𝑖
𝑌𝑠𝑖

}
is disabled,

therefore, it is remains as zero. Once the warm-up time is completed (after 80 orbits), the most active coefficients,
ranked based on the Bregman’s gains (15 % of all coefficients) are selected to form the CL term’s input-output pairs. As
seen in Fig. 4, the FE metric began to grow until it reached the threshold value, at which the CL term was enabled and
summation truncated.

The estimated values of the 54 drag-related parameters are shown in Fig. 5, with overall time history in Fig. 5a, and
a zoomed-in view around the CL activation in Fig. 5b. The coefficients begin with rapid dynamic variation in the first
ten hours and converge to nearly constant values during the warm-up phase. The zoomed-in view in Fig. 5b shows
the exponential convergence of a small set of coefficients when the CL term is activated, as described in the stability
analysis section. As a result, despite the large number of coefficients, the controller automatically selects a few dominant
terms that represent the drag disturbance and effectively discards the less relevant terms.
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Fig. 5 Behavior of the unknown parameters Θ̂.

Figure 6a shows the real and reconstructed differential drag in the LVLH frame. At the beginning, there is a
significant mismatch between the real and estimated drag because the controller is still adapting, and CL is disabled.
However, the estimation gradually moves closer to the truth value as time evolves, and after the CL term is activated.
The zoomed-in view for the last 10 orbits is shown Fig. 6b. The radial component oscillates around zero, the cross-track
is zero in this case, while the along-track component has a negative bias with a similar oscillatory pattern. In particular,
the controller correctly estimates that the drag has the largest value contributed in the along-track (y-component), as
expected for the differential drag. The remaining mismatch is mainly caused by the simplified choice of the library
function and density model, and could be reduced further with additional tuning of the controller.

Based on the selected coefficient from the library Γ(x, ¤x, 𝑡), the identified equation for the sparse representation
of differential drag Δa𝐿

𝐷
are given in (64)–(66). As expected from the structure of the differential drag in the LVLH

frame, the largest coefficients are in the along-track (y-component). Unknown to the controller which are the most
important terms, it is evident that the controller can correctly capture the along-track relative-velocity terms of both
chaser 𝐾𝑐 (𝑡) 𝑣𝐿rel,𝑐𝑦 and target 𝐾𝑡 (𝑡) 𝑣𝐿rel,𝑡 𝑦 , respectively. The identified coefficient in radial (x-component) is relatively
smaller than those in the equation (65), which is almost negligible in this scenario, and it indicates that it captures the
numerical noise.
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Fig. 6 Real vs reconstructed estimated differential drag in LVLH frame.

Δ𝑎̂𝐿𝐷,𝑥 = 10−12
(
1.03𝐾𝑐 (𝑡) 𝑣𝐿rel,𝑐𝑦 + 1.36𝐾𝑡 (𝑡) 𝑣𝐿rel,𝑡 𝑦

)
, (64)

Δ𝑎̂𝐿𝐷,𝑦 = 10−10
(
4.759𝐾𝑐 (𝑡) 𝑣𝐿rel,𝑐𝑦 + 4.763𝐾𝑡 (𝑡) 𝑣𝐿rel,𝑡 𝑦

− 1.226𝐾𝑐 (𝑡) 𝑣𝐿rel,𝑐𝑧 𝐶 (𝑡) − 0.829𝐾𝑡 (𝑡) 𝑣𝐿rel,𝑡 𝑧 𝐶 (𝑡)

− 0.0345𝐾𝑡 (𝑡) 𝑣𝐿rel,𝑡 𝑦 𝑆(𝑡) − 0.0233𝐾𝑡 (𝑡) 𝑣𝐿rel,𝑡 𝑦 𝐶 (𝑡)
)
, (65)

Δ𝑎̂𝐿𝐷,𝑧 = 0. (66)

B. Case B: Bregman CL without warm-up and no sparsity enforcement
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Fig. 7 Behavior of the 𝜆𝑚𝑖𝑛
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To illustrate the importance of the warm-up stage and sparsity enforcement, we ran a baseline case without having

warm-up stage and the controller was forced to use all coefficient in the library. This setup is used to show whether
the controller can still learn when the library contains a large set of coefficient. In this baseline case, the controller
still ensures relative state regulation and keeps the control input bounded with similar behavior as seen in the Fig. 2,
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therefore, the plots are omitted for brevity. However, as shown in the Fig. 7, the the FE metric 𝜆𝑚𝑖𝑛

{∑𝑁𝑠

𝑖=1𝑌
𝑇
𝑠𝑖
𝑌𝑠𝑖

}
remains at zero. This is because a large library contains many unknown coefficient and the maneuvers does not provide
sufficient independent information to separate each term. As result, many coefficient become similar to each other and
the controller cannot uniquely identify each term correctly. The baseline scenario show the importance of the warm-up
stage in helping identify the active terms in order to reduce the number of coefficients that the controller needs to learn.

Overall, simulation results confirm that the proposed Bregman-CL adaptation law is effective as it can handle a
library with large number of coefficient and automatically choose a small set of influential coefficients to recover the
differential drag while significantly reduce the effort of manual tuning or coefficient (i.e., dominant nonlinear functions)
selection.

VII. Conclusion
In this study, we addressed the problem of learning a differential drag model online while performing a rendezvous

maneuver in low Earth orbit. Building on the adaptive concurrent–learning framework of [16], we incorporated a
SINDy–inspired library and a Bregman sparsity enforcement to design an adaptive controller that simultaneously
regulates the relative motion and identifies a sparse representation of the drag disturbance. First, we proposed a
Bregman–CL adaptation law that can handle a differential drag disturbance modeled using a large library of functions.
The approach combines the warm-up phase, in which only the gradient and Bregman terms are active, with a subsequent
concurrent learning phase. Second, we introduced a Bregman-based feature selection that involves automatically
ranking the coefficients using the inverse of Hessian, which results in a small set of coefficients retained in the regressor.
Third, we demonstrated in a rendezvous scenario that the proposed controller can drive the chaser to the origin, and
reconstructed the dominant structure of the differential drag acceleration in the LVLH frame. The results show that
ML-inspired ideas such as SINDy can be embedded into adaptive control through the Bregman framework while
ensuring stability. By enabling data collection "on the fly" while maintaining stability, this approach supports the safe
development of data-driven methods in safety-critical applications, such as those in space, where large datasets are
often unavailable. Future work will extend this framework in several directions. First, we will consider expanding the
library to include more functions that can handle more complicated scenarios with higher fidelity. Second, we will
further evaluate the proposed approach to Differential Drag-based maneuvering and other aerospace control applications
to assess the generalization and robustness of the approach. Finally, we will implement the proposed Bregman–CL
controller in Software–in–the–Loop and, ultimately, on–orbit experiments to further validate its suitability for real
spacecraft guidance and control.
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